Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 7;68(Pt 2):m97–m98. doi: 10.1107/S160053681105495X

Poly[(μ4-3-carb­oxy­benzoato-κ5 O 1:O 1,O 1′:O 1′:O 3)(quinolin-8-olato-κ2 N,O)lead(II)]

Akbar Ghaemi a,, Zohreh Dadkhah a, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3274846  PMID: 22346895

Abstract

The asymmetric unit of the title complex, [Pb(C8H5O4)(C9H6NO)]n, comprises a PbII cation, a quinolin-8-olate anion and a 3-carb­oxy­benzoate anion. The coordination geometry of the PbII atom is defined by one N and six O atoms, as well as a stereochemically active lone pair of electrons, and is based on a Ψ-dodeca­hedron. The quinolin-8-olate is chelating and the 3-carb­oxy­benzoate anion forms bonds to four different PbII atoms. The benzoate end of the 3-carb­oxy­benzoate ligand chelates one PbII atom and simultaneously bridges two PbII atoms on either side, forming a chain along the b axis. The carboxyl end of the 3-carb­oxy­benzoate connects to a neighbouring chain by employing its carbonyl atom to form a bond to a PbII atom and the hydroxyl group to form a hydrogen bond to a quinolin-8-olate O atom. Thereby, a layer is formed in the bc plane.

Related literature

For background to PbII mixed quinolate carboxyl­ate structures, see: Shahverdizadeh et al. (2008).graphic file with name e-68-00m97-scheme1.jpg

Experimental

Crystal data

  • [Pb(C8H5O4)(C9H6NO)]

  • M r = 516.46

  • Monoclinic, Inline graphic

  • a = 9.0746 (2) Å

  • b = 7.0262 (2) Å

  • c = 22.6919 (6) Å

  • β = 93.185 (3)°

  • V = 1444.60 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.71 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.158, T max = 0.273

  • 9690 measured reflections

  • 3325 independent reflections

  • 3035 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.049

  • S = 1.01

  • 3325 reflections

  • 221 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −1.27 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681105495X/qm2046sup1.cif

e-68-00m97-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681105495X/qm2046Isup2.hkl

e-68-00m97-Isup2.hkl (163.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pb—O1 2.608 (2)
Pb—O1i 2.746 (2)
Pb—O2ii 2.578 (2)
Pb—O2i 2.809 (2)
Pb—O3iii 2.840 (3)
Pb—O5 2.318 (2)
Pb—N1 2.468 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O5iii 0.84 (1) 1.74 (3) 2.539 (4) 158 (6)

Symmetry code: (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge practical support of this study by the Islamic Azad University (Saveh Branch), and thank the University of Malaya for supporting the crystallographic facility.

supplementary crystallographic information

Comment

Mixed lead(II) complexes of quinolin-8-olate and monofunctional carboxylates have displayed a variety of structural motifs (Shahverdizadeh et al., 2008). In the present report, a 1:1 structure containing quinolin-8-olate and 3-carboxybenzoate is described, (I).

The asymmetric unit of (I) comprises a PbII cation, a quinolin-8-olate anion and a 3-carboxybenzoate anion, Fig. 1. The coordination geometry of the PbII atom is defined by a N and six O atoms as well as a stereochemically active lone pair of electrons, and is based on a Ψ-dodecahedron. The quinolin-8-olate anion is chelating, whereas the 3-carboxybenzoate anion is pentadentate, forming bonds to four different PbII atoms, Table 1. The benzoate group chelates one PbII atom and each of these O atoms forms a bond to a neighbouring PbII to form a chain along the b axis. Adjacent chains, along the c axis, are connected by Pb—O(carbonyl) bonds. The hydroxyl group forms a hydrogen bond to the quinolin-8-olate-O atom, Table 2. The result is a layer in the bc plane. Layers stack along the a axis, Fig. 3, with no specific intermolecular interactions between them.

Experimental

The title complex was obtained by the following method. A methanol solution (10 ml) of 8-hydroxyquinoline (0.145 g, 1 mmol) was added to an aqueous solution (2 ml) of Pb(NO3)2 (0.331 g, 1 mmol). The mixture was stirred for 10 min. To this solution, was added a DMF solution (5 ml) of isophthalic acid (0.084 g, 0.5 mmol) slowly at room temperature. This mixture was filtered. After keeping the filtrate in air, crystals were formed at the bottom of the vessel upon slow evaporation of the solvents at room temperature. M.pt. 558 K (dec.). Yield: 65%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The acid H-atom was located in a difference Fourier map, and was refined with a distance restraint of O—H 0.84±0.01 Å; its Uiso value was refined. The final difference Fourier map had a peak at 0.81 Å from Pb and a hole at 0.90 Å from the same atom.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the layer in the bc plane in (I).

Fig. 3.

Fig. 3.

A view in projection down the c axis of the unit-cell contents of (I) highlighting the stacking of layers.

Crystal data

[Pb(C8H5O4)(C9H6NO)] F(000) = 968
Mr = 516.46 Dx = 2.375 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6118 reflections
a = 9.0746 (2) Å θ = 2.2–27.5°
b = 7.0262 (2) Å µ = 11.71 mm1
c = 22.6919 (6) Å T = 100 K
β = 93.185 (3)° Block, yellow
V = 1444.60 (6) Å3 0.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3325 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3035 reflections with I > 2σ(I)
Mirror Rint = 0.029
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.8°
ω scan h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −9→8
Tmin = 0.158, Tmax = 0.273 l = −29→27
9690 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0237P)2 + 0.5749P] where P = (Fo2 + 2Fc2)/3
3325 reflections (Δ/σ)max = 0.001
221 parameters Δρmax = 0.92 e Å3
1 restraint Δρmin = −1.27 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb 0.513121 (14) 0.057458 (17) 0.305356 (5) 0.00777 (5)
O1 0.5980 (3) 0.4114 (3) 0.30020 (11) 0.0123 (5)
O2 0.4886 (3) 0.6925 (3) 0.31117 (10) 0.0107 (5)
O3 0.6052 (3) 0.7915 (4) 0.59124 (11) 0.0160 (6)
O4 0.4185 (3) 0.8397 (4) 0.52393 (12) 0.0141 (5)
H1 0.365 (6) 0.890 (8) 0.549 (2) 0.08 (2)*
O5 0.6896 (3) 0.0346 (3) 0.38285 (11) 0.0111 (5)
N1 0.7528 (4) −0.0485 (4) 0.27073 (13) 0.0104 (6)
C1 0.5716 (4) 0.5570 (5) 0.33079 (16) 0.0099 (7)
C2 0.6368 (4) 0.5693 (4) 0.39260 (16) 0.0084 (7)
C3 0.7672 (4) 0.4692 (5) 0.40797 (16) 0.0112 (7)
H3 0.8141 0.3966 0.3791 0.013*
C4 0.8270 (4) 0.4767 (5) 0.46522 (17) 0.0136 (8)
H4 0.9160 0.4104 0.4754 0.016*
C5 0.7586 (4) 0.5801 (5) 0.50806 (17) 0.0140 (8)
H5 0.8006 0.5848 0.5473 0.017*
C6 0.6275 (4) 0.6774 (5) 0.49317 (15) 0.0111 (7)
C7 0.5672 (4) 0.6744 (5) 0.43551 (15) 0.0100 (7)
H7 0.4794 0.7432 0.4253 0.012*
C8 0.5498 (4) 0.7761 (5) 0.54049 (16) 0.0109 (7)
C9 0.7848 (4) −0.0880 (5) 0.21594 (16) 0.0116 (8)
H9 0.7081 −0.0799 0.1858 0.014*
C10 0.9255 (4) −0.1409 (5) 0.19995 (17) 0.0149 (8)
H10 0.9432 −0.1670 0.1599 0.018*
C11 1.0383 (4) −0.1548 (5) 0.24300 (16) 0.0140 (8)
H11 1.1352 −0.1870 0.2327 0.017*
C12 1.0090 (4) −0.1206 (5) 0.30261 (16) 0.0117 (8)
C13 1.1178 (4) −0.1327 (5) 0.34965 (17) 0.0148 (8)
H13 1.2155 −0.1707 0.3422 0.018*
C14 1.0821 (4) −0.0899 (5) 0.40557 (18) 0.0156 (8)
H14 1.1558 −0.0983 0.4369 0.019*
C15 0.9372 (4) −0.0329 (5) 0.41800 (18) 0.0144 (8)
H15 0.9155 −0.0037 0.4575 0.017*
C16 0.8271 (4) −0.0193 (5) 0.37373 (17) 0.0106 (7)
C17 0.8635 (4) −0.0657 (4) 0.31489 (16) 0.0098 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb 0.00854 (8) 0.00841 (7) 0.00647 (8) 0.00005 (5) 0.00123 (5) −0.00047 (5)
O1 0.0151 (14) 0.0122 (12) 0.0097 (13) −0.0020 (11) 0.0002 (11) −0.0010 (10)
O2 0.0123 (13) 0.0092 (12) 0.0107 (13) 0.0024 (10) 0.0018 (10) −0.0005 (10)
O3 0.0171 (14) 0.0249 (14) 0.0061 (13) −0.0028 (12) 0.0007 (11) −0.0049 (11)
O4 0.0134 (14) 0.0197 (13) 0.0093 (13) 0.0005 (12) 0.0022 (11) −0.0020 (11)
O5 0.0098 (13) 0.0145 (13) 0.0089 (13) −0.0005 (10) 0.0005 (10) −0.0008 (10)
N1 0.0118 (16) 0.0112 (15) 0.0080 (16) −0.0034 (12) −0.0002 (13) −0.0007 (11)
C1 0.0112 (18) 0.0116 (17) 0.0072 (18) −0.0050 (14) 0.0035 (14) 0.0023 (13)
C2 0.0123 (18) 0.0057 (15) 0.0074 (17) −0.0025 (14) 0.0017 (14) 0.0017 (12)
C3 0.0126 (19) 0.0089 (16) 0.0123 (19) −0.0005 (15) 0.0036 (15) −0.0008 (14)
C4 0.0088 (18) 0.0169 (18) 0.015 (2) 0.0027 (15) −0.0003 (15) 0.0001 (15)
C5 0.013 (2) 0.0189 (18) 0.0094 (19) −0.0046 (16) −0.0021 (15) −0.0007 (15)
C6 0.0154 (19) 0.0104 (16) 0.0080 (18) −0.0011 (15) 0.0045 (14) 0.0004 (14)
C7 0.0110 (18) 0.0084 (16) 0.0103 (18) 0.0000 (14) −0.0031 (14) −0.0012 (13)
C8 0.0120 (18) 0.0099 (16) 0.0108 (18) −0.0054 (15) 0.0015 (14) −0.0001 (14)
C9 0.0149 (19) 0.0112 (16) 0.0087 (18) −0.0008 (15) −0.0008 (15) −0.0019 (14)
C10 0.020 (2) 0.0126 (18) 0.0129 (19) −0.0008 (16) 0.0050 (15) −0.0023 (14)
C11 0.0153 (19) 0.0098 (16) 0.017 (2) 0.0002 (15) 0.0062 (15) 0.0008 (14)
C12 0.0111 (19) 0.0068 (16) 0.017 (2) −0.0019 (14) 0.0016 (15) −0.0027 (14)
C13 0.0078 (18) 0.0150 (17) 0.021 (2) 0.0017 (15) 0.0003 (15) 0.0032 (15)
C14 0.012 (2) 0.0176 (18) 0.017 (2) −0.0007 (16) −0.0034 (16) −0.0005 (15)
C15 0.014 (2) 0.0127 (18) 0.017 (2) 0.0015 (15) 0.0002 (16) −0.0009 (15)
C16 0.0125 (19) 0.0031 (15) 0.016 (2) 0.0012 (14) 0.0022 (15) 0.0027 (13)
C17 0.0106 (18) 0.0071 (16) 0.0116 (19) −0.0027 (14) −0.0006 (15) −0.0003 (13)

Geometric parameters (Å, °)

Pb—O1 2.608 (2) C4—C5 1.388 (5)
Pb—O1i 2.746 (2) C4—H4 0.9500
Pb—O2ii 2.578 (2) C5—C6 1.397 (5)
Pb—O2i 2.809 (2) C5—H5 0.9500
Pb—O3iii 2.840 (3) C6—C7 1.390 (5)
Pb—O5 2.318 (2) C6—C8 1.489 (5)
Pb—N1 2.468 (3) C7—H7 0.9500
O1—C1 1.267 (4) C9—C10 1.397 (5)
O1—Pbiv 2.746 (2) C9—H9 0.9500
O2—C1 1.278 (4) C10—C11 1.379 (5)
O2—Pbv 2.578 (2) C10—H10 0.9500
O3—C8 1.235 (4) C11—C12 1.414 (5)
O4—C8 1.308 (4) C11—H11 0.9500
O4—H1 0.840 (10) C12—C13 1.416 (5)
O5—C16 1.331 (4) C12—C17 1.418 (5)
N1—C9 1.322 (5) C13—C14 1.360 (5)
N1—C17 1.385 (4) C13—H13 0.9500
C1—C2 1.494 (5) C14—C15 1.418 (6)
C2—C3 1.403 (5) C14—H14 0.9500
C2—C7 1.400 (5) C15—C16 1.380 (5)
C3—C4 1.381 (5) C15—H15 0.9500
C3—H3 0.9500 C16—C17 1.431 (5)
O5—Pb—N1 68.69 (10) C6—C5—H5 120.2
O5—Pb—O2ii 87.14 (7) C7—C6—C5 120.4 (3)
N1—Pb—O2ii 78.24 (8) C7—C6—C8 120.6 (3)
O5—Pb—O1 84.66 (8) C5—C6—C8 119.0 (3)
N1—Pb—O1 90.33 (9) C6—C7—C2 119.6 (3)
O2ii—Pb—O1 167.78 (8) C6—C7—H7 120.2
O5—Pb—O1i 147.23 (8) C2—C7—H7 120.2
N1—Pb—O1i 84.08 (9) O3—C8—O4 123.7 (3)
O2ii—Pb—O1i 69.16 (7) O3—C8—C6 121.9 (3)
O1—Pb—O1i 114.35 (6) O4—C8—C6 114.4 (3)
O5—Pb—O3iii 71.10 (8) N1—C9—C10 123.5 (3)
N1—Pb—O3iii 139.12 (8) N1—C9—H9 118.2
O2ii—Pb—O3iii 106.98 (8) C10—C9—H9 118.2
O1—Pb—O3iii 78.86 (8) C11—C10—C9 119.2 (4)
O1i—Pb—O3iii 136.32 (8) C11—C10—H10 120.4
C1—O1—Pb 132.9 (2) C9—C10—H10 120.4
C1—O1—Pbiv 96.0 (2) C10—C11—C12 119.6 (4)
Pb—O1—Pbiv 107.49 (8) C10—C11—H11 120.2
C1—O2—Pbv 135.0 (2) C12—C11—H11 120.2
C8—O4—H1 120 (4) C11—C12—C13 123.4 (4)
C16—O5—Pb 121.1 (2) C11—C12—C17 117.5 (3)
C9—N1—C17 118.3 (3) C13—C12—C17 119.1 (3)
C9—N1—Pb 127.4 (2) C14—C13—C12 119.9 (4)
C17—N1—Pb 114.4 (2) C14—C13—H13 120.1
O1—C1—O2 122.4 (3) C12—C13—H13 120.1
O1—C1—C2 118.9 (3) C13—C14—C15 121.3 (4)
O2—C1—C2 118.6 (3) C13—C14—H14 119.4
C3—C2—C7 119.9 (3) C15—C14—H14 119.4
C3—C2—C1 119.3 (3) C16—C15—C14 121.1 (4)
C7—C2—C1 120.9 (3) C16—C15—H15 119.5
C4—C3—C2 119.8 (4) C14—C15—H15 119.5
C4—C3—H3 120.1 O5—C16—C15 123.6 (4)
C2—C3—H3 120.1 O5—C16—C17 118.5 (3)
C3—C4—C5 120.7 (4) C15—C16—C17 117.9 (3)
C3—C4—H4 119.6 N1—C17—C12 121.9 (3)
C5—C4—H4 119.6 N1—C17—C16 117.4 (3)
C4—C5—C6 119.7 (3) C12—C17—C16 120.7 (3)
C4—C5—H5 120.2
O5—Pb—O1—C1 −77.9 (3) C3—C4—C5—C6 0.2 (6)
N1—Pb—O1—C1 −146.5 (3) C4—C5—C6—C7 −1.4 (5)
O2ii—Pb—O1—C1 −125.9 (4) C4—C5—C6—C8 175.7 (3)
O1i—Pb—O1—C1 129.9 (3) C5—C6—C7—C2 1.5 (5)
O3iii—Pb—O1—C1 −6.2 (3) C8—C6—C7—C2 −175.5 (3)
O5—Pb—O1—Pbiv 165.82 (11) C3—C2—C7—C6 −0.5 (5)
N1—Pb—O1—Pbiv 97.27 (11) C1—C2—C7—C6 177.6 (3)
O2ii—Pb—O1—Pbiv 117.8 (3) C7—C6—C8—O3 −175.3 (3)
O1i—Pb—O1—Pbiv 13.62 (6) C5—C6—C8—O3 7.6 (5)
O3iii—Pb—O1—Pbiv −122.43 (10) C7—C6—C8—O4 6.3 (5)
N1—Pb—O5—C16 0.4 (2) C5—C6—C8—O4 −170.8 (3)
O2ii—Pb—O5—C16 78.9 (2) C17—N1—C9—C10 −1.9 (5)
O1—Pb—O5—C16 −92.1 (2) Pb—N1—C9—C10 177.7 (3)
O1i—Pb—O5—C16 36.2 (3) N1—C9—C10—C11 0.4 (5)
O3iii—Pb—O5—C16 −172.1 (2) C9—C10—C11—C12 1.8 (5)
O5—Pb—N1—C9 −179.4 (3) C10—C11—C12—C13 179.6 (3)
O2ii—Pb—N1—C9 89.1 (3) C10—C11—C12—C17 −2.4 (5)
O1—Pb—N1—C9 −95.3 (3) C11—C12—C13—C14 177.2 (3)
O1i—Pb—N1—C9 19.2 (3) C17—C12—C13—C14 −0.7 (5)
O3iii—Pb—N1—C9 −168.5 (2) C12—C13—C14—C15 0.0 (6)
O5—Pb—N1—C17 0.1 (2) C13—C14—C15—C16 0.1 (6)
O2ii—Pb—N1—C17 −91.4 (2) Pb—O5—C16—C15 179.1 (3)
O1—Pb—N1—C17 84.3 (2) Pb—O5—C16—C17 −0.9 (4)
O1i—Pb—N1—C17 −161.3 (2) C14—C15—C16—O5 −179.5 (3)
O3iii—Pb—N1—C17 11.0 (3) C14—C15—C16—C17 0.4 (5)
Pb—O1—C1—O2 −108.0 (4) C9—N1—C17—C12 1.1 (5)
Pbiv—O1—C1—O2 12.7 (4) Pb—N1—C17—C12 −178.5 (3)
Pb—O1—C1—C2 70.5 (4) C9—N1—C17—C16 179.0 (3)
Pbiv—O1—C1—C2 −168.8 (3) Pb—N1—C17—C16 −0.6 (4)
Pbv—O2—C1—O1 −129.2 (3) C11—C12—C17—N1 1.0 (5)
Pbv—O2—C1—C2 52.3 (5) C13—C12—C17—N1 179.0 (3)
O1—C1—C2—C3 25.8 (5) C11—C12—C17—C16 −176.8 (3)
O2—C1—C2—C3 −155.6 (3) C13—C12—C17—C16 1.2 (5)
O1—C1—C2—C7 −152.3 (3) O5—C16—C17—N1 1.0 (5)
O2—C1—C2—C7 26.2 (5) C15—C16—C17—N1 −179.0 (3)
C7—C2—C3—C4 −0.7 (5) O5—C16—C17—C12 178.9 (3)
C1—C2—C3—C4 −178.9 (3) C15—C16—C17—C12 −1.1 (5)
C2—C3—C4—C5 0.9 (6)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y+1/2, −z+1/2; (v) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H1···O5iii 0.84 (1) 1.74 (3) 2.539 (4) 158 (6)

Symmetry codes: (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2046).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Shahverdizadeh, G. H., Soudi, A. A., Morsali, A. & Retailleau, P. (2008). Inorg. Chim. Acta, 361, 1875–1884.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681105495X/qm2046sup1.cif

e-68-00m97-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681105495X/qm2046Isup2.hkl

e-68-00m97-Isup2.hkl (163.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES