Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 7;68(Pt 2):m116–m117. doi: 10.1107/S1600536811056108

Dichlorido{N-[2-(diphenyl­phosphan­yl)benzyl­idene]-2-(thio­phen-2-yl)ethan­amine-κ2 P,N}platinum(II) dichloro­methane hemisolvate

Haleden Chiririwa a,*, Alfred Muller a,*
PMCID: PMC3274858  PMID: 22346805

Abstract

The crystal structure of the title compound, [PtCl2(C25H22NPS)]·0.5CH2Cl2, was determined to establish the coordination properties of the (phosphan­yl)benzyl­idene–methanamine ligand to platinum. In the unit cell two mol­ecules of cis-[PtCl2(C25H22NPS)] are accompanied by a dichloro­methane solvent mol­ecule. The square-planar Pt2+ coordination sphere is slightly distorted with the bidentate ligand coordinated via the P and the amine N atoms, and the Cl atoms located cis at the two remaining coordination sites. Parts of the thiophene ring and the solvate molecule were modeled as disordered with occupancy ratios of 0.55 (2):0.45 (2) and 0.302 (10):0.198 (10), respectively. Weak C—H⋯Cl inter­actions stabilize the crystal packing.

Related literature

For background to related structures, see: Chiririwa et al. (2011); Chiririwa & Meijboom (2011a ,b ,c ); Ghilardi et al. (1992); Sanchez et al. (1998, 2001); Coleman et al. (2001). For Pt—N and Pt—P bond lengths in similar platinum(II) complexes, see: Ankersmit et al. (1996). For background to weak hydrogen-bonding inter­actions, see Steiner (1996). graphic file with name e-68-0m116-scheme1.jpg

Experimental

Crystal data

  • [PtCl2(C25H22NPS)]·0.5CH2Cl2

  • M r = 707.92

  • Monoclinic, Inline graphic

  • a = 9.9635 (7) Å

  • b = 19.0185 (14) Å

  • c = 16.0155 (9) Å

  • β = 122.751 (3)°

  • V = 2552.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.97 mm−1

  • T = 173 K

  • 0.08 × 0.05 × 0.03 mm

Data collection

  • Bruker APEXII 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.647, T max = 0.841

  • 30158 measured reflections

  • 6593 independent reflections

  • 5165 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.058

  • S = 1.01

  • 6593 reflections

  • 333 parameters

  • 146 restraints

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT and XPREP (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811056108/nr2014sup1.cif

e-68-0m116-sup1.cif (35.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056108/nr2014Isup2.hkl

e-68-0m116-Isup2.hkl (316.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl2i 0.95 2.71 3.486 (4) 139
C12—H12⋯Cl1ii 0.95 2.71 3.639 (4) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged.

supplementary crystallographic information

Comment

Platinum complexes with (phosphanyl)benzylidene-methanamine ligands have been used as catalysts or catalyst precursors for a variety of organic reactions. Our group and others have recently been interested in these types of complexes and have reported several of these types of complexes (Chiririwa et al., 2011; Chiririwa & Meijboom, 2011a, 2011b, 2011c; Ghilardi et al., 1992; Sanchez et al., (1998, 2001) and Coleman et al., 2001).

The title compound (see Fig. 1) crystallize with a dichloromethane solvate, disordered over an inversion center, for each pair of cis-[PtCl2(C25H21NSP)] molecules. The square planar Pt coordination sphere is slightly distorted (Pt1 displaced -0.0275 (7)) Å from the plane formed by Pt1, P1, N1, Cl1 and Cl2 respectively; r.m.s. deviation of fitted atoms = 0.0423 Å). The distortion is featured most prominently in the N1—Pt1—P1 angle of 86.17 (10)° versus. Cl1—Pt1—Cl2 = 89.08 (4)°, indicating some ring strain induced by the chelation of the bidentate ligand. The average Pt—N and Pt—P bond lengths of 2.030 (3) and 2.2089 (9) Å, respectively are in the range expected for similar platinum(II) complexes (Ankersmit et al.(1996)). The initial refinement model of the compound showed some large displacement parameters for the thiophene moiety as well as the dichloromethane solvent. These disorders were elucidated to give an improved model (details can be found under the experimental refinement section). Two weak C—H···Cl interactions (Steiner, 1996) aid in the stabilization of the crystal structure (see Table 1, Fig. 2).

Experimental

To a dry CH2Cl2 (10 ml) solution of the precursor [Pt(COD)Cl2] was added an equimolar amount of (2-(diphenylphosphanyl) benzylidene)(thiophen-2-yl)methanamine in CH2Cl2 (10 ml), and stirred at room temperature for 2 hrs. The solvent was reduced and the complex precipitated out on addition of hexane, filtered off, washed with Et2O (2×5 ml) and dried under vacuum for 4 hrs affording a yellow precipitate in 72% yield. Crystals suitable for X-ray structure determination were obtained by recrystallization form a CH2Cl2-hexane mixture at room temperature.

Refinement

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 0.99 Å and 0.95 Å for methylene and aromatic H atoms respectively. All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq. A disorder refinement model was applied to the thiophene that showed large displacements at C2, C3 and S1. Geometrical (FLAT) restraints were applied to keep the rings C1, C2A/B, C3A/B, C4, S1A/B planar. Ellipsoid displacement (SIMU and DELU) restraints were also applied to the disordered moiety. The occupation parameters of the two disordered tiophene fragments were linked to a free variable so that the two sites add to unity. This showed a distribution of 0.54903:0.45097., The dichloromethane solvate was also refined as disordered on two positions in the asymmetric unit. This resulted in four disordered positions for each dichloromethane at each solvent accessible site in the crystal lattice. The occupancies of these sites were linked to a free variable to add to unity and refined to a ratio of 0.60331:0.39669 (based on the asymmetric unit fraction). To keep refinement stable geometrical (DIFX and DANG) restraints were applied to the C—Cl bonds and Cl···Cl distances All the above restraints were applied with the default standard deviations. The atoms of the solvate molecule was left isotropic due to the extensive nature of the disorder. The highest residual electron density of 0.84 e.Å-3 is 0.89 Å from Pt1 representing no physical meaning.

Figures

Fig. 1.

Fig. 1.

View of title compound showing displacement ellipsoids (drawn at a 30% probability level) and labeling. For clarity: a) hydrogen atoms omitted, b) bonds in part B of the disordered thiophene indicated with dotted lines, and c) minor component as well as symmetry generated disordered parts of dichloromethane created by inversion center omitted.

Fig. 2.

Fig. 2.

Partial packing diagram of title compound to illustrate the weak hydrogen bonding stabilizing crystal packing. All disordered components omitted for clarity.

Crystal data

[PtCl2(C25H22NPS)]·0.5CH2Cl2 F(000) = 1372
Mr = 707.92 Dx = 1.842 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5962 reflections
a = 9.9635 (7) Å θ = 2.6–28.2°
b = 19.0185 (14) Å µ = 5.97 mm1
c = 16.0155 (9) Å T = 173 K
β = 122.751 (3)° Block, yellow
V = 2552.3 (3) Å3 0.08 × 0.05 × 0.03 mm
Z = 4

Data collection

Bruker APEXII 4K-CCD diffractometer 6593 independent reflections
graphite 5165 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1 Rint = 0.052
φ and ω scans θmax = 28.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −13→13
Tmin = 0.647, Tmax = 0.841 k = −25→25
30158 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0216P)2 + 0.6014P] where P = (Fo2 + 2Fc2)/3
6593 reflections (Δ/σ)max = 0.002
333 parameters Δρmax = 0.84 e Å3
146 restraints Δρmin = −0.62 e Å3

Special details

Experimental. The intensity data was collected on a Bruker Apex-II 4 K CCD diffractometer using an exposure time of 80 s/frame. A total of 1315 frames were collected with a frame width of 0.5° covering up to θ = 28.72° with 99.8% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pt1 0.557569 (15) 0.701063 (7) 0.420321 (11) 0.02063 (4)
Cl1 0.38212 (12) 0.79833 (5) 0.36520 (9) 0.0382 (2)
Cl2 0.57723 (11) 0.70634 (5) 0.56946 (7) 0.0318 (2)
P1 0.73311 (10) 0.61536 (5) 0.46437 (7) 0.01889 (18)
N1 0.5342 (4) 0.69787 (16) 0.2864 (2) 0.0278 (7)
C1 0.1129 (5) 0.6300 (2) 0.1049 (3) 0.0385 (10)
C2A 0.0513 (10) 0.5796 (8) 0.0305 (9) 0.056 (4) 0.55 (2)
H2A 0.1137 0.5437 0.0264 0.067* 0.55 (2)
C3A −0.1149 (10) 0.5875 (9) −0.0387 (9) 0.056 (4) 0.55 (2)
H3A −0.1758 0.5578 −0.0947 0.067* 0.55 (2)
S1A −0.0359 (10) 0.6794 (6) 0.0932 (7) 0.060 (2) 0.55 (2)
C2B 0.0654 (13) 0.6113 (12) 0.0100 (8) 0.069 (5) 0.45 (2)
H2B 0.136 0.5934 −0.0076 0.083* 0.45 (2)
C3B −0.0994 (13) 0.6213 (13) −0.0587 (8) 0.060 (5) 0.45 (2)
H3B −0.1501 0.6136 −0.1281 0.072* 0.45 (2)
S1B −0.0452 (11) 0.6648 (7) 0.1052 (7) 0.0434 (19) 0.45 (2)
C4 −0.1785 (5) 0.6432 (3) −0.0158 (3) 0.0511 (12)
H4A −0.286 0.6588 −0.0553 0.061* 0.45 (2)
H4B −0.2912 0.6461 −0.0484 0.061* 0.55 (2)
C5 0.2814 (5) 0.6328 (2) 0.1939 (3) 0.0382 (10)
H5A 0.3404 0.5912 0.1932 0.046*
H5B 0.2795 0.6306 0.255 0.046*
C6 0.3689 (5) 0.6990 (2) 0.1964 (3) 0.0369 (10)
H6A 0.3728 0.7015 0.136 0.044*
H6B 0.3115 0.741 0.1979 0.044*
C7 0.6488 (5) 0.6932 (2) 0.2717 (3) 0.0318 (9)
H7 0.6203 0.6955 0.2047 0.038*
C8 0.8184 (5) 0.68468 (19) 0.3477 (3) 0.0272 (8)
C9 0.8769 (4) 0.64993 (18) 0.4383 (3) 0.0229 (8)
C10 1.0409 (4) 0.64245 (19) 0.5044 (3) 0.0267 (8)
H10 1.0809 0.6181 0.5652 0.032*
C11 1.1464 (5) 0.6705 (2) 0.4817 (3) 0.0345 (10)
H11 1.2581 0.6662 0.528 0.041*
C12 1.0910 (5) 0.7042 (2) 0.3935 (4) 0.0422 (11)
H12 1.1639 0.723 0.3784 0.051*
C13 0.9267 (5) 0.7108 (2) 0.3254 (3) 0.0365 (10)
H13 0.8882 0.7332 0.2635 0.044*
C14 0.8472 (4) 0.58128 (18) 0.5904 (3) 0.0209 (7)
C15 0.9314 (4) 0.6271 (2) 0.6700 (3) 0.0273 (8)
H15 0.9295 0.6762 0.6586 0.033*
C16 1.0187 (5) 0.6010 (2) 0.7665 (3) 0.0341 (9)
H16 1.0763 0.6323 0.8208 0.041*
C17 1.0217 (5) 0.5291 (2) 0.7835 (3) 0.0331 (9)
H17 1.0799 0.5114 0.8495 0.04*
C18 0.9395 (5) 0.4836 (2) 0.7041 (3) 0.0302 (9)
H18 0.943 0.4344 0.7156 0.036*
C19 0.8526 (4) 0.50892 (19) 0.6080 (3) 0.0246 (8)
H19 0.7964 0.4773 0.5538 0.029*
C20 0.6463 (4) 0.53857 (17) 0.3865 (3) 0.0201 (7)
C21 0.7114 (4) 0.50677 (19) 0.3381 (3) 0.0255 (8)
H21 0.8031 0.5265 0.3432 0.031*
C22 0.6429 (5) 0.4463 (2) 0.2825 (3) 0.0306 (9)
H22 0.6885 0.4246 0.25 0.037*
C23 0.5093 (5) 0.4177 (2) 0.2741 (3) 0.0318 (9)
H23 0.463 0.3762 0.2361 0.038*
C24 0.4419 (4) 0.44923 (19) 0.3211 (3) 0.0288 (9)
H24 0.3494 0.4295 0.315 0.035*
C25 0.5098 (4) 0.50953 (18) 0.3769 (3) 0.0234 (8)
H25 0.4633 0.5313 0.4088 0.028*
C26A 0.485 (3) 0.5266 (10) −0.0366 (13) 0.070 (6)* 0.302 (10)
H26A 0.5187 0.5656 −0.0625 0.084* 0.302 (10)
H26B 0.3693 0.5203 −0.0843 0.084* 0.302 (10)
Cl3A 0.5086 (19) 0.5549 (5) 0.0677 (8) 0.099 (3)* 0.302 (10)
Cl4A 0.5746 (14) 0.4531 (5) −0.0434 (8) 0.121 (4)* 0.302 (10)
C26B 0.564 (3) 0.5398 (9) −0.0142 (17) 0.047 (7)* 0.198 (10)
H26C 0.6572 0.5502 −0.0185 0.057* 0.198 (10)
H26D 0.4676 0.5612 −0.072 0.057* 0.198 (10)
Cl3B 0.591 (3) 0.5697 (8) 0.0906 (11) 0.122 (5)* 0.198 (10)
Cl4B 0.5390 (15) 0.4497 (6) −0.0105 (12) 0.090 (4)* 0.198 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.01969 (7) 0.01735 (7) 0.02733 (8) 0.00077 (6) 0.01435 (6) 0.00296 (7)
Cl1 0.0329 (5) 0.0267 (5) 0.0624 (7) 0.0114 (4) 0.0307 (5) 0.0171 (5)
Cl2 0.0343 (5) 0.0353 (5) 0.0322 (5) 0.0034 (4) 0.0221 (4) −0.0041 (4)
P1 0.0200 (4) 0.0179 (4) 0.0209 (5) −0.0001 (3) 0.0125 (4) 0.0013 (4)
N1 0.0254 (16) 0.0288 (17) 0.0290 (18) 0.0021 (14) 0.0145 (14) 0.0078 (15)
C1 0.030 (2) 0.057 (3) 0.022 (2) 0.0020 (19) 0.0097 (17) 0.0003 (19)
C2A 0.026 (4) 0.097 (9) 0.036 (6) 0.011 (5) 0.011 (4) −0.024 (6)
C3A 0.027 (4) 0.096 (9) 0.029 (6) −0.004 (5) 0.005 (4) −0.022 (6)
S1A 0.048 (2) 0.036 (3) 0.068 (4) 0.0109 (17) 0.012 (2) −0.009 (2)
C2B 0.033 (5) 0.141 (14) 0.029 (6) 0.006 (8) 0.014 (4) −0.018 (8)
C3B 0.038 (6) 0.113 (13) 0.020 (5) −0.002 (7) 0.009 (4) −0.006 (7)
S1B 0.042 (2) 0.051 (5) 0.033 (2) 0.013 (2) 0.0175 (18) −0.005 (2)
C4 0.033 (2) 0.059 (3) 0.040 (3) 0.009 (2) 0.006 (2) −0.002 (2)
C5 0.030 (2) 0.041 (2) 0.028 (2) −0.0028 (18) 0.0059 (18) 0.0048 (19)
C6 0.030 (2) 0.046 (3) 0.026 (2) 0.0025 (19) 0.0096 (18) 0.013 (2)
C7 0.039 (2) 0.030 (2) 0.032 (2) −0.0017 (18) 0.0224 (19) 0.0090 (18)
C8 0.032 (2) 0.024 (2) 0.036 (2) −0.0011 (15) 0.0254 (19) 0.0005 (16)
C9 0.0273 (19) 0.0202 (18) 0.028 (2) −0.0018 (15) 0.0195 (17) −0.0026 (16)
C10 0.0253 (19) 0.027 (2) 0.030 (2) −0.0024 (15) 0.0171 (18) −0.0036 (17)
C11 0.026 (2) 0.031 (2) 0.051 (3) −0.0060 (17) 0.024 (2) −0.010 (2)
C12 0.041 (2) 0.035 (2) 0.071 (3) −0.004 (2) 0.044 (3) 0.003 (2)
C13 0.045 (3) 0.031 (2) 0.051 (3) 0.0018 (18) 0.038 (2) 0.012 (2)
C14 0.0195 (17) 0.0241 (18) 0.0217 (19) 0.0019 (14) 0.0129 (15) 0.0023 (15)
C15 0.0240 (19) 0.027 (2) 0.026 (2) −0.0034 (15) 0.0108 (17) −0.0019 (16)
C16 0.029 (2) 0.041 (2) 0.022 (2) −0.0067 (18) 0.0081 (17) −0.0068 (19)
C17 0.029 (2) 0.046 (3) 0.022 (2) 0.0037 (18) 0.0123 (18) 0.0061 (19)
C18 0.033 (2) 0.027 (2) 0.029 (2) 0.0060 (17) 0.0162 (18) 0.0084 (17)
C19 0.029 (2) 0.0231 (19) 0.023 (2) 0.0015 (15) 0.0149 (17) 0.0030 (15)
C20 0.0224 (17) 0.0174 (17) 0.0195 (18) −0.0007 (14) 0.0107 (15) 0.0001 (14)
C21 0.0245 (19) 0.029 (2) 0.025 (2) 0.0007 (16) 0.0151 (17) −0.0014 (16)
C22 0.034 (2) 0.033 (2) 0.024 (2) 0.0030 (17) 0.0154 (18) −0.0066 (17)
C23 0.031 (2) 0.0207 (19) 0.031 (2) −0.0014 (16) 0.0092 (18) −0.0039 (17)
C24 0.026 (2) 0.025 (2) 0.031 (2) −0.0041 (16) 0.0123 (17) 0.0000 (17)
C25 0.0268 (19) 0.0220 (18) 0.027 (2) 0.0008 (15) 0.0179 (16) 0.0008 (16)

Geometric parameters (Å, °)

Pt1—N1 2.029 (3) C10—H10 0.95
Pt1—P1 2.2087 (9) C11—C12 1.367 (6)
Pt1—Cl2 2.2907 (10) C11—H11 0.95
Pt1—Cl1 2.3638 (9) C12—C13 1.397 (6)
P1—C20 1.808 (4) C12—H12 0.95
P1—C14 1.818 (4) C13—H13 0.95
P1—C9 1.818 (4) C14—C15 1.390 (5)
N1—C7 1.288 (5) C14—C19 1.400 (5)
N1—C6 1.490 (5) C15—C16 1.391 (5)
C1—C2B 1.373 (11) C15—H15 0.95
C1—C2A 1.388 (10) C16—C17 1.391 (6)
C1—C5 1.504 (5) C16—H16 0.95
C1—S1A 1.678 (9) C17—C18 1.383 (5)
C1—S1B 1.711 (9) C17—H17 0.95
C2A—C3A 1.416 (9) C18—C19 1.381 (5)
C2A—H2A 0.95 C18—H18 0.95
C3A—C4 1.382 (10) C19—H19 0.95
C3A—H3A 0.95 C20—C21 1.389 (5)
S1A—C4 1.690 (9) C20—C25 1.397 (5)
C2B—C3B 1.410 (11) C21—C22 1.387 (5)
C2B—H2B 0.95 C21—H21 0.95
C3B—C4 1.362 (11) C22—C23 1.376 (5)
C3B—H3B 0.95 C22—H22 0.95
S1B—C4 1.704 (10) C23—C24 1.386 (5)
C4—H4A 0.95 C23—H23 0.95
C4—H4B 0.95 C24—C25 1.385 (5)
C5—C6 1.519 (5) C24—H24 0.95
C5—H5A 0.99 C25—H25 0.95
C5—H5B 0.99 C26A—Cl3A 1.647 (16)
C6—H6A 0.99 C26A—Cl4A 1.692 (15)
C6—H6B 0.99 C26A—H26A 0.99
C7—C8 1.462 (6) C26A—H26B 0.99
C7—H7 0.95 C26B—Cl3B 1.648 (16)
C8—C13 1.397 (5) C26B—Cl4B 1.737 (16)
C8—C9 1.403 (5) C26B—H26C 0.99
C9—C10 1.393 (5) C26B—H26D 0.99
C10—C11 1.391 (5)
N1—Pt1—P1 86.20 (9) C13—C8—C7 116.9 (4)
N1—Pt1—Cl2 178.38 (9) C9—C8—C7 124.0 (3)
P1—Pt1—Cl2 95.34 (3) C10—C9—C8 119.6 (3)
N1—Pt1—Cl1 89.42 (9) C10—C9—P1 122.3 (3)
P1—Pt1—Cl1 174.06 (3) C8—C9—P1 118.1 (3)
Cl2—Pt1—Cl1 89.08 (4) C11—C10—C9 120.3 (4)
C20—P1—C14 104.86 (16) C11—C10—H10 119.9
C20—P1—C9 106.01 (16) C9—C10—H10 119.9
C14—P1—C9 106.69 (16) C12—C11—C10 120.7 (4)
C20—P1—Pt1 112.03 (12) C12—C11—H11 119.7
C14—P1—Pt1 121.94 (11) C10—C11—H11 119.7
C9—P1—Pt1 104.23 (12) C11—C12—C13 119.7 (4)
C7—N1—C6 116.7 (3) C11—C12—H12 120.1
C7—N1—Pt1 126.1 (3) C13—C12—H12 120.1
C6—N1—Pt1 117.2 (2) C8—C13—C12 120.6 (4)
C2B—C1—C5 126.7 (6) C8—C13—H13 119.7
C2A—C1—C5 125.9 (5) C12—C13—H13 119.7
C2B—C1—S1A 105.5 (6) C15—C14—C19 119.6 (3)
C2A—C1—S1A 109.7 (5) C15—C14—P1 120.0 (3)
C5—C1—S1A 123.5 (4) C19—C14—P1 120.4 (3)
C2B—C1—S1B 109.7 (6) C14—C15—C16 119.9 (4)
C2A—C1—S1B 106.8 (5) C14—C15—H15 120
C5—C1—S1B 122.8 (4) C16—C15—H15 120
C1—C2A—C3A 112.6 (7) C17—C16—C15 120.2 (4)
C1—C2A—H2A 123.7 C17—C16—H16 119.9
C3A—C2A—H2A 123.7 C15—C16—H16 119.9
C4—C3A—C2A 112.6 (7) C18—C17—C16 119.7 (4)
C4—C3A—H3A 123.7 C18—C17—H17 120.1
C2A—C3A—H3A 123.7 C16—C17—H17 120.1
C1—S1A—C4 94.9 (5) C19—C18—C17 120.5 (4)
C1—C2B—C3B 112.8 (8) C19—C18—H18 119.7
C1—C2B—H2B 123.6 C17—C18—H18 119.7
C3B—C2B—H2B 123.6 C18—C19—C14 120.0 (4)
C4—C3B—C2B 113.3 (8) C18—C19—H19 120
C4—C3B—H3B 123.4 C14—C19—H19 120
C2B—C3B—H3B 123.4 C21—C20—C25 119.1 (3)
C4—S1B—C1 93.2 (4) C21—C20—P1 122.9 (3)
C3B—C4—S1A 104.7 (6) C25—C20—P1 118.0 (3)
C3A—C4—S1A 109.6 (5) C22—C21—C20 120.2 (3)
C3B—C4—S1B 109.9 (6) C22—C21—H21 119.9
C3A—C4—S1B 107.4 (5) C20—C21—H21 119.9
C3B—C4—H4A 120.7 C23—C22—C21 120.3 (4)
C3A—C4—H4A 125.2 C23—C22—H22 119.9
S1A—C4—H4A 125.2 C21—C22—H22 119.9
S1B—C4—H4A 126 C22—C23—C24 120.2 (4)
C3B—C4—H4B 125.1 C22—C23—H23 119.9
C3A—C4—H4B 118.3 C24—C23—H23 119.9
S1A—C4—H4B 128.9 C25—C24—C23 119.8 (4)
S1B—C4—H4B 125 C25—C24—H24 120.1
C1—C5—C6 112.6 (3) C23—C24—H24 120.1
C1—C5—H5A 109.1 C24—C25—C20 120.4 (3)
C6—C5—H5A 109.1 C24—C25—H25 119.8
C1—C5—H5B 109.1 C20—C25—H25 119.8
C6—C5—H5B 109.1 Cl3A—C26A—Cl4A 123.0 (11)
H5A—C5—H5B 107.8 Cl3A—C26A—H26A 106.6
N1—C6—C5 109.4 (3) Cl4A—C26A—H26A 106.6
N1—C6—H6A 109.8 Cl3A—C26A—H26B 106.6
C5—C6—H6A 109.8 Cl4A—C26A—H26B 106.6
N1—C6—H6B 109.8 H26A—C26A—H26B 106.6
C5—C6—H6B 109.8 Cl3B—C26B—Cl4B 104.7 (12)
H6A—C6—H6B 108.2 Cl3B—C26B—H26C 110.8
N1—C7—C8 126.5 (4) Cl4B—C26B—H26C 110.8
N1—C7—H7 116.7 Cl3B—C26B—H26D 110.8
C8—C7—H7 116.7 Cl4B—C26B—H26D 110.8
C13—C8—C9 119.1 (4) H26C—C26B—H26D 108.9
N1—Pt1—P1—C20 −59.67 (15) Pt1—N1—C7—C8 4.2 (6)
Cl2—Pt1—P1—C20 119.82 (12) N1—C7—C8—C13 −152.5 (4)
N1—Pt1—P1—C14 174.99 (16) N1—C7—C8—C9 30.0 (6)
Cl2—Pt1—P1—C14 −5.52 (14) C13—C8—C9—C10 0.3 (5)
N1—Pt1—P1—C9 54.51 (15) C7—C8—C9—C10 177.7 (4)
Cl2—Pt1—P1—C9 −126.00 (13) C13—C8—C9—P1 −179.1 (3)
P1—Pt1—N1—C7 −43.9 (3) C7—C8—C9—P1 −1.7 (5)
Cl1—Pt1—N1—C7 132.1 (3) C20—P1—C9—C10 −105.8 (3)
P1—Pt1—N1—C6 134.3 (3) C14—P1—C9—C10 5.6 (3)
Cl1—Pt1—N1—C6 −49.8 (3) Pt1—P1—C9—C10 135.8 (3)
C2B—C1—C2A—C3A −82.1 (14) C20—P1—C9—C8 73.6 (3)
C5—C1—C2A—C3A 174.8 (7) C14—P1—C9—C8 −175.0 (3)
S1A—C1—C2A—C3A 5.3 (10) Pt1—P1—C9—C8 −44.7 (3)
S1B—C1—C2A—C3A 18.3 (10) C8—C9—C10—C11 1.3 (5)
C1—C2A—C3A—C4 −0.7 (12) P1—C9—C10—C11 −179.3 (3)
C2B—C1—S1A—C4 25.5 (9) C9—C10—C11—C12 −1.6 (6)
C2A—C1—S1A—C4 −6.6 (7) C10—C11—C12—C13 0.2 (6)
C5—C1—S1A—C4 −176.4 (4) C9—C8—C13—C12 −1.8 (6)
S1B—C1—S1A—C4 −86 (3) C7—C8—C13—C12 −179.3 (4)
C2A—C1—C2B—C3B 86.2 (15) C11—C12—C13—C8 1.5 (6)
C5—C1—C2B—C3B −173.5 (9) C20—P1—C14—C15 179.5 (3)
S1A—C1—C2B—C3B −16.4 (13) C9—P1—C14—C15 67.3 (3)
S1B—C1—C2B—C3B −3.8 (12) Pt1—P1—C14—C15 −52.0 (3)
C1—C2B—C3B—C4 −3.9 (16) C20—P1—C14—C19 0.4 (3)
C2B—C1—S1B—C4 8.0 (9) C9—P1—C14—C19 −111.8 (3)
C2A—C1—S1B—C4 −24.5 (8) Pt1—P1—C14—C19 128.9 (2)
C5—C1—S1B—C4 178.2 (4) C19—C14—C15—C16 −0.9 (5)
S1A—C1—S1B—C4 81 (2) P1—C14—C15—C16 180.0 (3)
C2B—C3B—C4—C3A −81.7 (14) C14—C15—C16—C17 −0.1 (6)
C2B—C3B—C4—S1A 21.9 (13) C15—C16—C17—C18 1.0 (6)
C2B—C3B—C4—S1B 9.7 (15) C16—C17—C18—C19 −1.0 (6)
C2A—C3A—C4—C3B 82.5 (13) C17—C18—C19—C14 0.1 (6)
C2A—C3A—C4—S1A −4.1 (11) C15—C14—C19—C18 0.9 (5)
C2A—C3A—C4—S1B −17.4 (11) P1—C14—C19—C18 −180.0 (3)
C1—S1A—C4—C3B −27.5 (9) C14—P1—C20—C21 −98.8 (3)
C1—S1A—C4—C3A 6.2 (8) C9—P1—C20—C21 13.8 (4)
C1—S1A—C4—S1B 88 (2) Pt1—P1—C20—C21 126.9 (3)
C1—S1B—C4—C3B −10.1 (10) C14—P1—C20—C25 79.7 (3)
C1—S1B—C4—C3A 24.2 (8) C9—P1—C20—C25 −167.6 (3)
C1—S1B—C4—S1A −78 (2) Pt1—P1—C20—C25 −54.5 (3)
C2B—C1—C5—C6 79.4 (13) C25—C20—C21—C22 −1.1 (5)
C2A—C1—C5—C6 118.0 (10) P1—C20—C21—C22 177.5 (3)
S1A—C1—C5—C6 −73.9 (8) C20—C21—C22—C23 0.5 (6)
S1B—C1—C5—C6 −89.1 (7) C21—C22—C23—C24 0.2 (6)
C7—N1—C6—C5 113.9 (4) C22—C23—C24—C25 −0.3 (6)
Pt1—N1—C6—C5 −64.4 (4) C23—C24—C25—C20 −0.3 (6)
C1—C5—C6—N1 179.9 (4) C21—C20—C25—C24 1.0 (5)
C6—N1—C7—C8 −174.0 (4) P1—C20—C25—C24 −177.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···Cl2i 0.95 2.71 3.486 (4) 139
C12—H12···Cl1ii 0.95 2.71 3.639 (4) 168.

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NR2014).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Ankersmit, H. A., Loken, B. H., Kooijman, H., Spek, A. L., Vrieze, K. & van Koten, G. (1996). Inorg. Chim. Acta, 252, 141–155.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2007). APEX2, SADABS, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chiririwa, H. & Meijboom, R. (2011a). Acta Cryst. E67, m1496. [DOI] [PMC free article] [PubMed]
  6. Chiririwa, H. & Meijboom, R. (2011b). Acta Cryst. E67, m1497. [DOI] [PMC free article] [PubMed]
  7. Chiririwa, H. & Meijboom, R. (2011c). Acta Cryst. E67, m1498. [DOI] [PMC free article] [PubMed]
  8. Chiririwa, H., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m608–m609. [DOI] [PMC free article] [PubMed]
  9. Coleman, K. S., Green, M. L. H., Pascu, S. I., Rees, N. H., Cowley, A. R. & Rees, L. H. (2001). J. Chem. Soc. Dalton Trans. pp. 3384–3395.
  10. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  11. Ghilardi, C. A., Midollini, S., Moneti, S., Orlandini, A. & Scapacci, G. (1992). J. Chem. Soc. Dalton Trans. pp. 3371–3376.
  12. Sanchez, G., Momblona, F., Perez, J. & Lopez, G. (2001). Transition Met. Chem. 26, 100–104.
  13. Sanchez, G., Serrano, J. L., Ruiz, F. & Lopez, G. (1998). J. Fluorine Chem. 91, 165–169.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Steiner, T. (1996). Crystallogr. Rev. 6, 1–57.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811056108/nr2014sup1.cif

e-68-0m116-sup1.cif (35.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056108/nr2014Isup2.hkl

e-68-0m116-Isup2.hkl (316.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES