Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):m135–m136. doi: 10.1107/S1600536811056145

Aqua­[1,8-bis­(pyridin-2-yl)-3,6-dithia­octane-κ4 N,S,S′,N′]copper(II) dinitrate acetonitrile monosolvate

Mayra Manzanera-Estrada a, Marcos Flores-Alamo b, Jean-Michel Grevy M c, Lena Ruiz-Azuara b, Luis Ortiz-Frade a,*
PMCID: PMC3274872  PMID: 22346819

Abstract

In the title compound, [Cu(C16H20N2S2)(H2O)](NO3)2·CH3CN, the CuII atom displays a distorted square-pyramidal coordination, in which a water mol­ecule occupies the apical position and the basal plane is formed by two N atoms and two S atoms of a 1,8-bis­(pyridin-2-yl)-3,6-dithia­octane ligand. The crystal packing is stabilized by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For a related compound, see: Rodríguez-Torres et al. (2009). For related structures of Cu(II) complexes with 1,8-bis­(pyridin-2-yl)-3,6-dithia­octane ligands, see: Brubaker et al. (1979); Humphery et al. (1988). For a description of the geometry of complexes with five-coordinate CuII ions, see: Addison et al. (1984).graphic file with name e-68-0m135-scheme1.jpg

Experimental

Crystal data

  • [Cu(C16H20N2S2)(H2O)](NO3)2·C2H3N

  • M r = 551.09

  • Triclinic, Inline graphic

  • a = 8.8409 (5) Å

  • b = 10.8140 (5) Å

  • c = 13.5141 (6) Å

  • α = 79.895 (4)°

  • β = 71.500 (4)°

  • γ = 69.817 (4)°

  • V = 1146.86 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 138 K

  • 0.59 × 0.30 × 0.08 mm

Data collection

  • Oxford Diffraction Gemini Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.624, T max = 0.914

  • 8086 measured reflections

  • 4509 independent reflections

  • 3744 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.076

  • S = 1.06

  • 4509 reflections

  • 305 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811056145/hy2502sup1.cif

e-68-0m135-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056145/hy2502Isup2.hkl

e-68-0m135-Isup2.hkl (216.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1D⋯O5i 0.74 (3) 1.94 (3) 2.669 (2) 169 (3)
O1W—H1E⋯O1 0.77 (2) 2.00 (3) 2.754 (3) 166 (2)
C3—H3⋯O2ii 0.95 2.55 3.487 (3) 168
C8—H8A⋯O1iii 0.99 2.54 3.447 (3) 152
C8—H8B⋯O4iii 0.99 2.55 3.341 (3) 137
C10—H10A⋯O1iii 0.99 2.43 3.228 (3) 137
C10—H10B⋯O5iv 0.99 2.45 3.271 (3) 140
C13—H13⋯O6iv 0.95 2.42 3.277 (3) 149
C14—H14⋯O2v 0.95 2.56 3.220 (3) 127
C16—H16⋯O6v 0.95 2.36 3.126 (3) 137
C17—H17A⋯O6 0.98 2.26 3.145 (3) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank CONACyT (130500) for financial support.

supplementary crystallographic information

Comment

Cu(II)–[1,8-bis(pyridin-2-yl)-3,6-dithiaoctane] complex has demonstrated biological activity against human tumor cervix line HeLa, which can be related to bio-mimetic Cu-SOD activity. Electrochemical studies indicate that the high flexibility of the 1,8-bis(pyridin-2-yl)-3,6-dithiaoctane ligand towards the preferential geometry of central atom could be an important factor in biological activity. However, the crystal structure of this compound was not obtained (Rodríguez-Torres et al., 2009).

The asymmetric unit of the title compound contains one complex cation [Cu(pdto)(H2O)]2+ [pdto = 1,8-bis(pyridin-2-yl)-3,6-dithiaoctane], two nitrate anions and one acetonitrile solvent molecule (Fig. 1). The complex cation consists of a five-coordinated CuII ion in a distorted squared-pyramidal environment. The basal sites are occupied by N1, N2, S1 and S2 of the 1,8-bis(pyridin-2-yl)-3,6-dithiaoctane ligand (Humphery et al., 1988). The basal Cu—N/S bond lengths are in a range of 2.0169 (17)–2.3488 (6) Å. The aqua ligand in the apical position has a Cu1—O1W bond distance of 2.1342 (16) Å, 0.129 Å shorter than that of 2.263 Å observed in [Cu(pdto)(ClO4)]ClO4 (Brubaker et al., 1979). The basal CuN2S2 plane presents a slight distortion from planarity (τ = 0.1621) (Addison et al., 1984), as shown by the displacements of the atoms from a mean plane through them; the metal ion is situated 0.2260 (5) Å above the N1/N2/S1/S2 plane [least-squares plane: 7.663 (2)x + 1.291 (4)y + 9.420 (4)z = 14.302 (4)].

The nitrate anions and acetonitrile molecule are not involved in the coordination sphere of the Cu ion. In the crystal, O—H···O and weak C—H···O hydrogen bonds stabilize the crystal packing (Table 1). The water molecule (O1W) interacts with O1 and O5 acceptor atoms of the nitrate anions, forming a C22(5) motif.

Experimental

Cu(NO3).2.5H2O (0.129 g, 0.56 mmol) was dissolved in 20 ml of anhydrous acetonitrile, followed by slow addition of 1,8-bis(pyridin-2-yl)-3,6-dithiaoctane (0.1693 g, 0.56 mmol) contained in 5 ml of anhydrous acetonitrile. A deep blue solution was obtained, and by slow ether diffusion, crystals suitable for X-ray analysis were obtained after 3 days.

Refinement

H atoms bonded to O atom were located in difference Fourier maps and refined with Uiso(H) = Ueq(O). H atoms attached to C atoms were positioned geometrically and refined as riding on their parent atoms, with C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 (methylene) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure for the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[Cu(C16H20N2S2)(H2O)](NO3)2·C2H3N Z = 2
Mr = 551.09 F(000) = 570
Triclinic, P1 Dx = 1.596 Mg m3
a = 8.8409 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.8140 (5) Å Cell parameters from 5580 reflections
c = 13.5141 (6) Å θ = 3.5–26.0°
α = 79.895 (4)° µ = 1.18 mm1
β = 71.500 (4)° T = 138 K
γ = 69.817 (4)° Lamina, dark-blue
V = 1146.86 (10) Å3 0.59 × 0.30 × 0.08 mm

Data collection

Oxford Diffraction Gemini Atlas diffractometer 4509 independent reflections
graphite 3744 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1 Rint = 0.023
ω scans θmax = 26.1°, θmin = 3.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) h = −10→9
Tmin = 0.624, Tmax = 0.914 k = −13→12
8086 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0411P)2] where P = (Fo2 + 2Fc2)/3
4509 reflections (Δ/σ)max = 0.001
305 parameters Δρmax = 0.66 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5834 (3) 0.7615 (2) 0.83597 (16) 0.0179 (5)
H1 0.5363 0.8284 0.7887 0.021*
C2 0.4779 (3) 0.7292 (2) 0.92882 (17) 0.0204 (5)
H2 0.3603 0.7723 0.945 0.024*
C3 0.5462 (3) 0.6329 (2) 0.99811 (17) 0.0218 (5)
H3 0.477 0.6107 1.0638 0.026*
C4 0.7164 (3) 0.5699 (2) 0.97001 (16) 0.0191 (5)
H4 0.765 0.5021 1.0161 0.023*
C5 0.8173 (3) 0.6045 (2) 0.87531 (16) 0.0158 (4)
C6 1.0013 (3) 0.5327 (2) 0.84063 (16) 0.0174 (5)
H6A 1.0365 0.4776 0.901 0.021*
H6B 1.0633 0.5981 0.8174 0.021*
C7 1.0492 (3) 0.4443 (2) 0.75161 (16) 0.0192 (5)
H7A 0.9807 0.3835 0.7731 0.023*
H7B 1.1683 0.3898 0.7403 0.023*
C8 1.2318 (3) 0.5431 (2) 0.56171 (17) 0.0199 (5)
H8A 1.2805 0.5627 0.6115 0.024*
H8B 1.3047 0.4573 0.5331 0.024*
C9 1.2209 (3) 0.6514 (2) 0.47372 (17) 0.0219 (5)
H9A 1.1771 0.6282 0.4229 0.026*
H9B 1.3349 0.6567 0.4367 0.026*
C10 1.2157 (3) 0.8567 (2) 0.58109 (16) 0.0181 (5)
H10A 1.3303 0.7931 0.5631 0.022*
H10B 1.2242 0.9452 0.5509 0.022*
C11 1.1507 (3) 0.8592 (2) 0.70013 (16) 0.0175 (5)
H11A 1.1456 0.7703 0.7313 0.021*
H11B 1.2298 0.8815 0.7266 0.021*
C12 0.9796 (3) 0.9581 (2) 0.73364 (15) 0.0156 (4)
C13 0.9532 (3) 1.0732 (2) 0.77730 (17) 0.0200 (5)
H13 1.0416 1.087 0.795 0.024*
C14 0.7971 (3) 1.1677 (2) 0.79486 (17) 0.0231 (5)
H14 0.7773 1.2464 0.8256 0.028*
C15 0.6700 (3) 1.1474 (2) 0.76767 (17) 0.0212 (5)
H15 0.5634 1.213 0.7762 0.025*
C16 0.7027 (3) 1.0283 (2) 0.72745 (16) 0.0180 (5)
H16 0.6155 1.0126 0.7098 0.022*
C17 0.2700 (3) 0.0954 (2) 0.98358 (19) 0.0329 (6)
H17A 0.3251 0.0748 0.9105 0.049*
H17B 0.2791 0.0131 1.0286 0.049*
H17C 0.3244 0.1485 1.0036 0.049*
C18 0.0950 (4) 0.1690 (3) 0.99553 (19) 0.0324 (6)
N1 0.7503 (2) 0.70242 (16) 0.80927 (13) 0.0147 (4)
N2 0.8527 (2) 0.93454 (16) 0.71257 (13) 0.0139 (4)
N3 −0.0409 (4) 0.2285 (3) 1.0044 (2) 0.0611 (8)
N4 0.3300 (2) 0.15790 (18) 0.65069 (14) 0.0209 (4)
N5 0.5198 (2) 0.52975 (17) 0.72843 (14) 0.0188 (4)
O1 0.5078 (2) 0.61883 (15) 0.65457 (12) 0.0275 (4)
O2 0.65264 (19) 0.48347 (14) 0.75472 (12) 0.0234 (4)
O1W 0.6855 (2) 0.79702 (17) 0.60155 (13) 0.0223 (4)
O3 0.3987 (2) 0.48851 (19) 0.77325 (13) 0.0399 (5)
O4 0.4269 (2) 0.22261 (17) 0.60683 (13) 0.0333 (4)
O5 0.2323 (3) 0.1471 (2) 0.60526 (14) 0.0507 (6)
O6 0.3220 (2) 0.10636 (19) 0.74130 (12) 0.0373 (5)
S1 1.02040 (7) 0.53473 (5) 0.62853 (4) 0.01695 (13)
S2 1.08663 (7) 0.81202 (5) 0.51967 (4) 0.01743 (13)
Cu1 0.88876 (3) 0.75583 (2) 0.667678 (18) 0.01329 (9)
H1D 0.696 (3) 0.815 (2) 0.545 (2) 0.02*
H1E 0.650 (3) 0.739 (2) 0.6110 (19) 0.02*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0170 (12) 0.0159 (11) 0.0193 (11) −0.0044 (9) −0.0038 (9) −0.0015 (9)
C2 0.0150 (11) 0.0211 (12) 0.0215 (12) −0.0058 (10) 0.0007 (9) −0.0030 (9)
C3 0.0239 (13) 0.0236 (12) 0.0160 (11) −0.0113 (10) 0.0029 (9) −0.0046 (9)
C4 0.0247 (13) 0.0191 (11) 0.0142 (11) −0.0090 (10) −0.0052 (9) 0.0012 (9)
C5 0.0205 (11) 0.0156 (11) 0.0131 (10) −0.0068 (9) −0.0050 (9) −0.0026 (8)
C6 0.0180 (11) 0.0198 (11) 0.0151 (11) −0.0071 (9) −0.0065 (9) 0.0032 (9)
C7 0.0196 (12) 0.0167 (11) 0.0174 (11) −0.0042 (10) −0.0031 (9) 0.0017 (9)
C8 0.0157 (11) 0.0186 (11) 0.0210 (12) −0.0040 (9) 0.0011 (9) −0.0047 (9)
C9 0.0244 (13) 0.0239 (12) 0.0148 (11) −0.0086 (10) 0.0024 (9) −0.0078 (9)
C10 0.0142 (11) 0.0188 (11) 0.0208 (12) −0.0071 (9) −0.0018 (9) −0.0020 (9)
C11 0.0140 (11) 0.0170 (11) 0.0218 (11) −0.0046 (9) −0.0058 (9) −0.0014 (9)
C12 0.0159 (11) 0.0183 (11) 0.0120 (10) −0.0077 (9) −0.0023 (8) 0.0024 (8)
C13 0.0207 (12) 0.0226 (12) 0.0183 (11) −0.0113 (10) −0.0017 (9) −0.0034 (9)
C14 0.0250 (13) 0.0169 (11) 0.0239 (12) −0.0092 (10) 0.0023 (10) −0.0041 (9)
C15 0.0182 (12) 0.0164 (11) 0.0210 (12) −0.0016 (10) −0.0001 (9) 0.0008 (9)
C16 0.0139 (11) 0.0186 (11) 0.0198 (11) −0.0056 (9) −0.0041 (9) 0.0026 (9)
C17 0.0342 (15) 0.0361 (14) 0.0242 (13) −0.0051 (12) −0.0078 (11) −0.0044 (11)
C18 0.0366 (16) 0.0307 (14) 0.0284 (14) −0.0107 (13) −0.0067 (12) −0.0025 (11)
N1 0.0167 (10) 0.0147 (9) 0.0123 (9) −0.0060 (8) −0.0023 (7) −0.0010 (7)
N2 0.0134 (9) 0.0147 (9) 0.0129 (9) −0.0051 (7) −0.0030 (7) 0.0015 (7)
N3 0.0369 (16) 0.0621 (18) 0.074 (2) −0.0040 (14) −0.0147 (14) −0.0030 (15)
N4 0.0180 (10) 0.0246 (10) 0.0180 (10) −0.0055 (9) −0.0026 (8) −0.0029 (8)
N5 0.0207 (10) 0.0196 (10) 0.0158 (9) −0.0068 (8) −0.0019 (8) −0.0052 (8)
O1 0.0310 (10) 0.0262 (8) 0.0294 (9) −0.0141 (8) −0.0157 (8) 0.0123 (7)
O2 0.0190 (9) 0.0237 (8) 0.0277 (9) −0.0018 (7) −0.0114 (7) −0.0029 (7)
O1W 0.0265 (9) 0.0306 (10) 0.0163 (8) −0.0168 (8) −0.0102 (7) 0.0058 (7)
O3 0.0311 (10) 0.0629 (13) 0.0322 (10) −0.0318 (10) −0.0073 (8) 0.0128 (9)
O4 0.0285 (10) 0.0412 (10) 0.0362 (10) −0.0229 (9) −0.0069 (8) 0.0032 (8)
O5 0.0662 (14) 0.0919 (16) 0.0228 (10) −0.0612 (13) −0.0203 (9) 0.0136 (10)
O6 0.0240 (9) 0.0706 (13) 0.0171 (9) −0.0205 (9) −0.0069 (7) 0.0111 (8)
S1 0.0190 (3) 0.0175 (3) 0.0142 (3) −0.0070 (2) −0.0022 (2) −0.0026 (2)
S2 0.0174 (3) 0.0196 (3) 0.0139 (3) −0.0070 (2) −0.0022 (2) 0.0012 (2)
Cu1 0.01294 (14) 0.01486 (14) 0.01176 (14) −0.00559 (11) −0.00217 (10) 0.00008 (10)

Geometric parameters (Å, °)

C1—N1 1.345 (3) C11—H11B 0.99
C1—C2 1.376 (3) C12—N2 1.353 (3)
C1—H1 0.95 C12—C13 1.387 (3)
C2—C3 1.382 (3) C13—C14 1.381 (3)
C2—H2 0.95 C13—H13 0.95
C3—C4 1.376 (3) C14—C15 1.381 (3)
C3—H3 0.95 C14—H14 0.95
C4—C5 1.382 (3) C15—C16 1.388 (3)
C4—H4 0.95 C15—H15 0.95
C5—N1 1.356 (2) C16—N2 1.342 (3)
C5—C6 1.498 (3) C16—H16 0.95
C6—C7 1.530 (3) C17—C18 1.445 (4)
C6—H6A 0.99 C17—H17A 0.98
C6—H6B 0.99 C17—H17B 0.98
C7—S1 1.820 (2) C17—H17C 0.98
C7—H7A 0.99 C18—N3 1.129 (3)
C7—H7B 0.99 N1—Cu1 2.0265 (17)
C8—C9 1.517 (3) N2—Cu1 2.0169 (17)
C8—S1 1.826 (2) N4—O4 1.233 (2)
C8—H8A 0.99 N4—O6 1.244 (2)
C8—H8B 0.99 N4—O5 1.252 (2)
C9—S2 1.817 (2) N5—O3 1.239 (2)
C9—H9A 0.99 N5—O2 1.246 (2)
C9—H9B 0.99 N5—O1 1.263 (2)
C10—C11 1.529 (3) O1W—Cu1 2.1342 (16)
C10—S2 1.830 (2) O1W—H1D 0.74 (2)
C10—H10A 0.99 O1W—H1E 0.77 (3)
C10—H10B 0.99 S1—Cu1 2.3419 (6)
C11—C12 1.501 (3) S2—Cu1 2.3488 (6)
C11—H11A 0.99
N1—C1—C2 122.79 (19) N2—C12—C11 116.83 (18)
N1—C1—H1 118.6 C13—C12—C11 122.20 (19)
C2—C1—H1 118.6 C14—C13—C12 119.4 (2)
C1—C2—C3 118.7 (2) C14—C13—H13 120.3
C1—C2—H2 120.6 C12—C13—H13 120.3
C3—C2—H2 120.6 C15—C14—C13 119.8 (2)
C4—C3—C2 118.7 (2) C15—C14—H14 120.1
C4—C3—H3 120.7 C13—C14—H14 120.1
C2—C3—H3 120.7 C14—C15—C16 117.9 (2)
C3—C4—C5 120.56 (19) C14—C15—H15 121
C3—C4—H4 119.7 C16—C15—H15 121
C5—C4—H4 119.7 N2—C16—C15 122.6 (2)
N1—C5—C4 120.49 (19) N2—C16—H16 118.7
N1—C5—C6 117.97 (18) C15—C16—H16 118.7
C4—C5—C6 121.51 (18) C18—C17—H17A 109.5
C5—C6—C7 113.22 (17) C18—C17—H17B 109.5
C5—C6—H6A 108.9 H17A—C17—H17B 109.5
C7—C6—H6A 108.9 C18—C17—H17C 109.5
C5—C6—H6B 108.9 H17A—C17—H17C 109.5
C7—C6—H6B 108.9 H17B—C17—H17C 109.5
H6A—C6—H6B 107.7 N3—C18—C17 178.7 (3)
C6—C7—S1 113.97 (14) C1—N1—C5 118.68 (18)
C6—C7—H7A 108.8 C1—N1—Cu1 118.34 (13)
S1—C7—H7A 108.8 C5—N1—Cu1 122.85 (14)
C6—C7—H7B 108.8 C16—N2—C12 119.15 (18)
S1—C7—H7B 108.8 C16—N2—Cu1 121.40 (14)
H7A—C7—H7B 107.7 C12—N2—Cu1 119.34 (14)
C9—C8—S1 108.29 (15) O4—N4—O6 121.63 (19)
C9—C8—H8A 110 O4—N4—O5 119.84 (18)
S1—C8—H8A 110 O6—N4—O5 118.48 (19)
C9—C8—H8B 110 O3—N5—O2 120.81 (18)
S1—C8—H8B 110 O3—N5—O1 119.09 (19)
H8A—C8—H8B 108.4 O2—N5—O1 120.10 (18)
C8—C9—S2 112.79 (15) Cu1—O1W—H1D 121 (2)
C8—C9—H9A 109 Cu1—O1W—H1E 112.8 (18)
S2—C9—H9A 109 H1D—O1W—H1E 102 (3)
C8—C9—H9B 109 C7—S1—C8 101.14 (10)
S2—C9—H9B 109 C7—S1—Cu1 105.19 (7)
H9A—C9—H9B 107.8 C8—S1—Cu1 98.81 (7)
C11—C10—S2 114.91 (15) C9—S2—C10 102.25 (10)
C11—C10—H10A 108.5 C9—S2—Cu1 102.29 (7)
S2—C10—H10A 108.5 C10—S2—Cu1 100.95 (7)
C11—C10—H10B 108.5 N2—Cu1—N1 92.23 (7)
S2—C10—H10B 108.5 N2—Cu1—O1W 101.61 (7)
H10A—C10—H10B 107.5 N1—Cu1—O1W 91.34 (7)
C12—C11—C10 111.75 (17) N2—Cu1—S1 159.72 (5)
C12—C11—H11A 109.3 N1—Cu1—S1 91.39 (5)
C10—C11—H11A 109.3 O1W—Cu1—S1 98.25 (5)
C12—C11—H11B 109.3 N2—Cu1—S2 84.82 (5)
C10—C11—H11B 109.3 N1—Cu1—S2 169.43 (5)
H11A—C11—H11B 107.9 O1W—Cu1—S2 99.19 (5)
N2—C12—C13 120.82 (19) S1—Cu1—S2 88.00 (2)
N1—C1—C2—C3 0.6 (3) C11—C10—S2—C9 −111.41 (16)
C1—C2—C3—C4 −2.2 (3) C11—C10—S2—Cu1 −6.11 (16)
C2—C3—C4—C5 1.4 (3) C16—N2—Cu1—N1 −71.14 (15)
C3—C4—C5—N1 1.0 (3) C12—N2—Cu1—N1 105.23 (15)
C3—C4—C5—C6 −176.8 (2) C16—N2—Cu1—O1W 20.69 (16)
N1—C5—C6—C7 −70.0 (2) C12—N2—Cu1—O1W −162.94 (15)
C4—C5—C6—C7 107.9 (2) C16—N2—Cu1—S1 −171.24 (11)
C5—C6—C7—S1 67.2 (2) C12—N2—Cu1—S1 5.1 (3)
S1—C8—C9—S2 58.91 (18) C16—N2—Cu1—S2 119.04 (15)
S2—C10—C11—C12 −60.7 (2) C12—N2—Cu1—S2 −64.60 (14)
C10—C11—C12—N2 65.2 (2) C1—N1—Cu1—N2 70.66 (16)
C10—C11—C12—C13 −110.3 (2) C5—N1—Cu1—N2 −113.39 (16)
N2—C12—C13—C14 −3.1 (3) C1—N1—Cu1—O1W −31.02 (16)
C11—C12—C13—C14 172.21 (18) C5—N1—Cu1—O1W 144.93 (16)
C12—C13—C14—C15 −0.8 (3) C1—N1—Cu1—S1 −129.30 (15)
C13—C14—C15—C16 2.9 (3) C5—N1—Cu1—S1 46.64 (15)
C14—C15—C16—N2 −1.2 (3) C1—N1—Cu1—S2 144.2 (2)
C2—C1—N1—C5 1.8 (3) C5—N1—Cu1—S2 −39.9 (4)
C2—C1—N1—Cu1 177.89 (16) C7—S1—Cu1—N2 62.99 (16)
C4—C5—N1—C1 −2.5 (3) C8—S1—Cu1—N2 −41.17 (16)
C6—C5—N1—C1 175.32 (18) C7—S1—Cu1—N1 −37.25 (9)
C4—C5—N1—Cu1 −178.48 (15) C8—S1—Cu1—N1 −141.42 (9)
C6—C5—N1—Cu1 −0.6 (3) C7—S1—Cu1—O1W −128.81 (9)
C15—C16—N2—C12 −2.6 (3) C8—S1—Cu1—O1W 127.03 (9)
C15—C16—N2—Cu1 173.80 (16) C7—S1—Cu1—S2 132.19 (8)
C13—C12—N2—C16 4.7 (3) C8—S1—Cu1—S2 28.02 (7)
C11—C12—N2—C16 −170.80 (17) C9—S2—Cu1—N2 157.96 (9)
C13—C12—N2—Cu1 −171.73 (15) C10—S2—Cu1—N2 52.70 (8)
C11—C12—N2—Cu1 12.8 (2) C9—S2—Cu1—N1 83.8 (3)
C6—C7—S1—C8 96.11 (17) C10—S2—Cu1—N1 −21.5 (3)
C6—C7—S1—Cu1 −6.32 (17) C9—S2—Cu1—O1W −101.09 (9)
C9—C8—S1—C7 −161.96 (15) C10—S2—Cu1—O1W 153.65 (9)
C9—C8—S1—Cu1 −54.46 (15) C9—S2—Cu1—S1 −3.05 (8)
C8—C9—S2—C10 73.74 (18) C10—S2—Cu1—S1 −108.31 (7)
C8—C9—S2—Cu1 −30.51 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1D···O5i 0.74 (3) 1.94 (3) 2.669 (2) 169 (3)
O1W—H1E···O1 0.77 (2) 2.00 (3) 2.754 (3) 166 (2)
C3—H3···O2ii 0.95 2.55 3.487 (3) 168
C8—H8A···O1iii 0.99 2.54 3.447 (3) 152
C8—H8B···O4iii 0.99 2.55 3.341 (3) 137
C10—H10A···O1iii 0.99 2.43 3.228 (3) 137
C10—H10B···O5iv 0.99 2.45 3.271 (3) 140
C13—H13···O6iv 0.95 2.42 3.277 (3) 149
C14—H14···O2v 0.95 2.56 3.220 (3) 127
C16—H16···O6v 0.95 2.36 3.126 (3) 137
C17—H17A···O6 0.98 2.26 3.145 (3) 150

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2502).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. J. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Brubaker, G. R., Brown, J. N., Yoo, M. K., Kinsey, R. A., Kutchan, T. M. & Mottel, E. A. (1979). Inorg. Chem. 18, 299–302.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Humphery, D. G., Fallon, G. D. & Murray, K. S. (1988). J. Chem. Soc. Chem. Commun. pp. 1356–1358.
  6. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  7. Rodríguez-Torres, D., García-Ramos, J. C., Manríquez, J., Moreno-Esparza, R., Lozano, M. A., González, I., Gracia-Mora, I., Ruiz-Azuara, L., López, R. A. & Ortiz-Frade, L. (2009). Polyhedron, 28, 1886–1890.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811056145/hy2502sup1.cif

e-68-0m135-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056145/hy2502Isup2.hkl

e-68-0m135-Isup2.hkl (216.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES