Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 14;68(Pt 2):m143. doi: 10.1107/S1600536811055954

trans-Dichloridobis(quinoline-κN)palladium(II)

Kwang Ha a,*
PMCID: PMC3274877  PMID: 22346824

Abstract

In the title complex, [PdCl2(C9H7N)2], the PdII ion is four-coordinated in an essentially square-planar environment defined by two N atoms from two quinoline ligands and two Cl anions. The Pd atom is located on an inversion centre, and thus the asymmetric unit contains one half of the complex; the PdN2Cl2 unit is exactly planar. The dihedral angle between the PdN2Cl2 unit and quinoline ligand is 85.63 (8)°. In the crystal, the complex mol­ecules are stacked into columns along the b axis. In the columns, several inter­molecular π–π inter­actions between the six-membered rings are present, the shortest ring centroid–centroid distance being 3.764 (3) Å between pyridine rings.

Related literature

For the crystal structure of the related PtII complex cis-[PtCl2(quinoline)2]·0.25DMF, see: Davies et al. (2001).graphic file with name e-68-0m143-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C9H7N)2]

  • M r = 435.61

  • Monoclinic, Inline graphic

  • a = 16.430 (3) Å

  • b = 7.0050 (11) Å

  • c = 16.118 (2) Å

  • β = 119.532 (3)°

  • V = 1614.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 200 K

  • 0.31 × 0.13 × 0.11 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.869, T max = 1.000

  • 4776 measured reflections

  • 1577 independent reflections

  • 1125 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.095

  • S = 1.05

  • 1577 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 1.30 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811055954/tk5039sup1.cif

e-68-0m143-sup1.cif (14.3KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pd1—N1 2.035 (4)
Pd1—Cl1 2.2973 (12)
N1—Pd1—Cl1 89.53 (10)

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

supplementary crystallographic information

Comment

In the title complex, [PdCl2(quinoline)2], the PdII ion is four-coordinated in an essentially square-planar environment by two N atoms from two quinoline ligands and two Cl- anions (Fig. 1 and Table 1). The Cl atoms are in trans conformation with respect to each other. By contrast, in the analogous PtII complex [PtCl2(quinoline)2].0.25DMF (DMF = N,N-dimethylformamide), the Cl atoms are in cis conformation (Davies et al., 2001).

The Pd atom is located on an inversion centre, and thus the asymmetric unit contains one half of the complex; the PdN2Cl2 unit is exactly planar. The nearly planar quinoline ligands, with a maximum deviation of 0.015 (4) Å from the least-squares plane, are parallel. The dihedral angle between the PdN2Cl2 unit and quinoline ligand is 85.63 (8)°. The Cl atoms are almost perpendicular to the quinoline planes, with the bond angle <N1—Pd1—Cl1 = 89.53 (10)°. In the crystal, the complex molecules are stacked into columns along the b axis (Fig. 2). In the columns, several intermolecular π-π interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.764 (3) Å between pyridyl rings.

Experimental

To a solution of Na2PdCl4 (0.2943 g, 1.000 mmol) in H2O (20 ml) was added quinoline (0.2590 g, 2.005 mmol). The mixture was stirred for 3 h at room temperature. The formed precipitate was separated by filtration, washed with H2O and EtOH, and dried at 50 °C, to give a yellow powder (0.3706 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from its dimethyl sulfoxide (DMSO) solution at 90 °C.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (1.30 e Å-3) and the deepest hole (-0.40 e Å-3) in the final difference Fourier map were located 1.01 Å and 1.49 Å from the atoms Pd1 and H5, respectively.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title complex, with displacement ellipsoids drawn at the 40% probability level and the atom numbering. Unlabelled atoms are related to the reference atoms by the (-x, 1 - y, -z) symmetry transformation.

Fig. 2.

Fig. 2.

A view of the unit-cell contents of the title complex, along the a axis.

Crystal data

[PdCl2(C9H7N)2] F(000) = 864
Mr = 435.61 Dx = 1.793 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1841 reflections
a = 16.430 (3) Å θ = 2.9–25.6°
b = 7.0050 (11) Å µ = 1.48 mm1
c = 16.118 (2) Å T = 200 K
β = 119.532 (3)° Block, yellow
V = 1614.0 (4) Å3 0.31 × 0.13 × 0.11 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 1577 independent reflections
Radiation source: fine-focus sealed tube 1125 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −19→20
Tmin = 0.869, Tmax = 1.000 k = −8→8
4776 measured reflections l = −18→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0442P)2] where P = (Fo2 + 2Fc2)/3
1577 reflections (Δ/σ)max < 0.001
106 parameters Δρmax = 1.30 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.0000 0.5000 0.0000 0.0367 (2)
Cl1 −0.01202 (8) 0.3930 (2) 0.12827 (8) 0.0488 (3)
N1 0.1092 (2) 0.3186 (6) 0.0364 (3) 0.0381 (9)
C1 0.0916 (3) 0.1476 (7) −0.0041 (3) 0.0451 (12)
H1 0.0288 0.1172 −0.0498 0.054*
C2 0.1606 (4) 0.0098 (7) 0.0169 (4) 0.0480 (13)
H2 0.1449 −0.1106 −0.0142 0.058*
C3 0.2514 (4) 0.0518 (7) 0.0833 (4) 0.0490 (14)
H3 0.2996 −0.0392 0.0988 0.059*
C4 0.2721 (3) 0.2324 (7) 0.1284 (3) 0.0356 (10)
C5 0.3633 (3) 0.2877 (8) 0.1971 (3) 0.0505 (13)
H5 0.4134 0.1997 0.2162 0.061*
C6 0.3806 (4) 0.4638 (8) 0.2362 (4) 0.0519 (14)
H6 0.4426 0.4991 0.2819 0.062*
C7 0.3078 (4) 0.5939 (9) 0.2100 (3) 0.0496 (13)
H7 0.3211 0.7172 0.2383 0.060*
C8 0.2180 (3) 0.5483 (7) 0.1448 (3) 0.0421 (12)
H8 0.1692 0.6384 0.1283 0.051*
C9 0.1979 (3) 0.3651 (7) 0.1018 (3) 0.0373 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.0248 (3) 0.0445 (3) 0.0377 (3) 0.0052 (2) 0.0129 (2) 0.0054 (2)
Cl1 0.0436 (7) 0.0605 (9) 0.0453 (7) 0.0101 (7) 0.0243 (6) 0.0128 (6)
N1 0.030 (2) 0.041 (2) 0.042 (2) 0.0018 (18) 0.0168 (18) 0.0036 (19)
C1 0.040 (3) 0.046 (3) 0.050 (3) −0.008 (2) 0.023 (2) −0.002 (2)
C2 0.065 (4) 0.033 (3) 0.054 (3) −0.003 (3) 0.035 (3) 0.000 (2)
C3 0.048 (3) 0.047 (3) 0.061 (3) 0.014 (2) 0.033 (3) 0.016 (3)
C4 0.032 (2) 0.039 (3) 0.040 (3) 0.007 (2) 0.020 (2) 0.008 (2)
C5 0.037 (3) 0.062 (4) 0.050 (3) 0.010 (3) 0.019 (2) 0.011 (3)
C6 0.032 (3) 0.071 (4) 0.044 (3) −0.001 (3) 0.012 (2) −0.001 (3)
C7 0.046 (3) 0.060 (3) 0.041 (3) −0.005 (3) 0.021 (2) −0.008 (3)
C8 0.035 (3) 0.042 (3) 0.046 (3) 0.001 (2) 0.018 (2) −0.002 (2)
C9 0.033 (3) 0.043 (3) 0.037 (3) 0.005 (2) 0.018 (2) 0.009 (2)

Geometric parameters (Å, °)

Pd1—N1 2.035 (4) C3—H3 0.9500
Pd1—N1i 2.035 (4) C4—C5 1.409 (6)
Pd1—Cl1 2.2973 (12) C4—C9 1.421 (6)
Pd1—Cl1i 2.2973 (12) C5—C6 1.350 (7)
N1—C1 1.326 (6) C5—H5 0.9500
N1—C9 1.351 (5) C6—C7 1.393 (8)
C1—C2 1.397 (7) C6—H6 0.9500
C1—H1 0.9500 C7—C8 1.362 (7)
C2—C3 1.373 (7) C7—H7 0.9500
C2—H2 0.9500 C8—C9 1.418 (7)
C3—C4 1.414 (6) C8—H8 0.9500
N1—Pd1—N1i 180.0 (2) C5—C4—C3 122.9 (4)
N1—Pd1—Cl1 89.53 (10) C5—C4—C9 118.6 (5)
N1i—Pd1—Cl1 90.47 (10) C3—C4—C9 118.4 (4)
N1—Pd1—Cl1i 90.47 (10) C6—C5—C4 121.0 (5)
N1i—Pd1—Cl1i 89.53 (10) C6—C5—H5 119.5
Cl1—Pd1—Cl1i 180.00 (9) C4—C5—H5 119.5
C1—N1—C9 119.4 (4) C5—C6—C7 120.3 (5)
C1—N1—Pd1 118.3 (3) C5—C6—H6 119.8
C9—N1—Pd1 122.2 (3) C7—C6—H6 119.8
N1—C1—C2 123.4 (5) C8—C7—C6 121.4 (5)
N1—C1—H1 118.3 C8—C7—H7 119.3
C2—C1—H1 118.3 C6—C7—H7 119.3
C3—C2—C1 118.7 (5) C7—C8—C9 119.5 (5)
C3—C2—H2 120.6 C7—C8—H8 120.3
C1—C2—H2 120.6 C9—C8—H8 120.3
C2—C3—C4 119.1 (5) N1—C9—C8 120.1 (4)
C2—C3—H3 120.4 N1—C9—C4 120.9 (4)
C4—C3—H3 120.4 C8—C9—C4 119.1 (4)
Cl1—Pd1—N1—C1 93.7 (3) C5—C6—C7—C8 −0.1 (8)
Cl1i—Pd1—N1—C1 −86.3 (3) C6—C7—C8—C9 −0.6 (8)
Cl1—Pd1—N1—C9 −84.5 (3) C1—N1—C9—C8 179.2 (4)
Cl1i—Pd1—N1—C9 95.5 (3) Pd1—N1—C9—C8 −2.6 (6)
C9—N1—C1—C2 −0.2 (7) C1—N1—C9—C4 −0.7 (6)
Pd1—N1—C1—C2 −178.5 (3) Pd1—N1—C9—C4 177.5 (3)
N1—C1—C2—C3 0.5 (7) C7—C8—C9—N1 −179.4 (4)
C1—C2—C3—C4 0.2 (7) C7—C8—C9—C4 0.5 (7)
C2—C3—C4—C5 −179.8 (5) C5—C4—C9—N1 −179.9 (4)
C2—C3—C4—C9 −1.1 (7) C3—C4—C9—N1 1.4 (6)
C3—C4—C5—C6 177.8 (5) C5—C4—C9—C8 0.2 (6)
C9—C4—C5—C6 −0.9 (7) C3—C4—C9—C8 −178.6 (4)
C4—C5—C6—C7 0.8 (8)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5039).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Davies, M. S., Diakos, C. I., Messerle, B. A. & Hambley, T. W. (2001). Inorg. Chem. 40, 3048–3054. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811055954/tk5039sup1.cif

e-68-0m143-sup1.cif (14.3KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES