Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 14;68(Pt 2):m149. doi: 10.1107/S1600536811055474

[3-Meth­oxy-1-(phenyl­sulfan­yl)prop­yl]triphenyl­tin(IV) benzene 0.17-solvate

Gerd Ludwig a, Michael Block a, Christoph Wagner a, Dirk Steinborn a,*
PMCID: PMC3274883  PMID: 22346830

Abstract

In the title compound, [Sn(C6H5)3(C10H13OS)]·0.17C6H6, the SnIV atom exhibits a slightly distorted tetra­hedral coordination geometry built up by four C atoms, which are the three ipso-C atoms of the phenyl rings and the α-C atom of the deprotonated γ-O-functionalized propyl phenyl sulfide. The benzene mol­ecule lies about a threefold rotoinversion axis.

Related literature

The synthesis of the tin compound was performed according to Block et al. (2009). For a better understanding of the use and synthesis of heteroatom-functionalized tin compounds, see: Kauffmann et al. (1982); Linnert et al. (2008).graphic file with name e-68-0m149-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)3(C10H13OS)]·0.17C6H6

  • M r = 544.27

  • Trigonal, Inline graphic

  • a = 35.338 (3) Å

  • c = 10.5660 (8) Å

  • V = 11427.1 (16) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 220 K

  • 0.46 × 0.31 × 0.15 mm

Data collection

  • Stoe IPDS diffractometer

  • Absorption correction: numerical (IPDS Software; Stoe & Cie, 1999) T min = 0.648, T max = 0.847

  • 22832 measured reflections

  • 4905 independent reflections

  • 4008 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.065

  • S = 0.99

  • 4905 reflections

  • 288 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: IPDS EXPOSE (Stoe & Cie, 1999); cell refinement: IPDS EXPOSE; data reduction: IPDS INTEGRATE (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811055474/is5011sup1.cif

e-68-0m149-sup1.cif (33KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055474/is5011Isup2.hkl

e-68-0m149-Isup2.hkl (240.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

C1—Sn 2.196 (2)
C5—S 1.774 (3)
C11—Sn 2.150 (2)
C17—Sn 2.153 (2)
C23—Sn 2.147 (2)

Acknowledgments

Financial support from the Graduiertenförderung des Landes Sachsen-Anhalt is gratefully acknowledged.

supplementary crystallographic information

Comment

The synthesis of the tin compound was performed according to Block et al. (2009). The title compound, [Sn(C6H5)3(C10H13OS)].0.17C6H6, crystallizes in the trigonal crystal system in the space group R–3. In crystals isolated molecules of the tin compound and of the solvent molecules (C6H6) were found. No unusual intermolecular interactions exist between them; the shortest distance between non-hydrogen atoms is 3.540 (5) Å [C12···C16(1/3 + x - y, -1/3 + x, 5/3 - z)]. The molecular structure of the tin compound is shown in Figure 1, selected bond lengths and angles are summarized in Table 1. The primary coordination sphere of the tin atom is built up by four carbon atoms, which are the three ipso-C atoms of the phenyl rings and the α-C atom of the deprotonated γ-O-functionalized propyl phenyl sulfide. Thus, the presence of an α-stannylated sulfide could be clearly proved. The C1–S–C5 angle is 105.7 (1)°; therefore the C1 atom has to be described as sp3 hybridized. The configuration of the tin atom is slightly tetrahedral distorted; the C–Sn–C angles range from 103.8 (9) to 114.57 (9)°. The distance between the tin atom and the oxygen atom of the pending methoxy group is 3.100 (2) Å which points to a weak intramolecular interaction between these two atoms. The center of the solvent molecules (C6H6) has -3 site symmetry. Thus, the asymmetric unit contains only one CH group.

Experimental

At -78 °C, to a solution of n-BuLi in n-hexane (1.5 M, 0.01 mol) in toluene (20 ml), TMEDA (0.01 mol) was added and, after stirring for 15 min, PhSCH2CH2CH2OCH3 (0.01 mol). Then, the reaction mixture was stirred for 24 h at room temperature. This was followed by dropwise addtion of Ph3SnCl (0.01 mol) at -78 °C and by stirring for 24 h at room temperature. Then, the reaction mixture was treated with a saturated solution of NH4Cl in water (50 ml). The aqueous phase was washed with diethyl ether (3 × 30 ml). The combined organic phases were dried (Na2SO4), the solvents were removed in vacuo and the crude product was purified by centrifugally accelerated thin layer chromatography with diethyl ether as eluent (yield 3.98 g, 76%).Single crystals suitable for X-ray diffraction measurements were obtained by recrystallization from benzene. Characterization: 1H-NMR (500 MHz, CDCl3): δ 2.19 – 2.25 (m, 2H, CH2CH2CH), 2.89 (s, 3H, OCH3), 3.01 – 3.04 (m, 1H, SnCH), 3.36 – 3.69 (m, 2H, CH2OCH3), 7.18 – 7.19 (m, 1H, p-H, SPh), 7.25 – 7.36 (m, 2H, m-H, SPh), 7.37 – 7.41 (m, 21H, C6H5, Sn(Ph)3 + C6H6), 7.60 – 7.66 (m, 2H, o-H, SPh).119Sn-NMR (186 MHz, CDCl3): δ 126.3 (s).

Refinement

All H atoms were positioned geometrically and treated as riding model, with C—H bond distances of 0.98, 0.99 and 1.00 Å for CH3, CH2 and CH type H-atoms, respectively, and with Uiso(H) = 1.5 times Ueq(methyl C) and 1.2 times Ueq(non-methyl C). To modify the C—C bond lengths of the benzene molecule the restraint C—C = 1.390 (5) Å was used.

Figures

Fig. 1.

Fig. 1.

Structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level and the H atoms are shown as small spheres of arbitrary radii.

Crystal data

[Sn(C6H5)3(C10H13OS)]·0.17C6H6 Dx = 1.424 Mg m3
Mr = 544.27 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3 Cell parameters from 8000 reflections
Hall symbol: -R 3 θ = 2.0–25.6°
a = 35.338 (3) Å µ = 1.11 mm1
c = 10.5660 (8) Å T = 220 K
V = 11427.1 (16) Å3 Block, colourless
Z = 18 0.46 × 0.31 × 0.15 mm
F(000) = 4986

Data collection

Stoe IPDS diffractometer 4905 independent reflections
Radiation source: fine-focus sealed tube 4008 reflections with I > 2σ(I)
graphite Rint = 0.061
area detector scans θmax = 25.9°, θmin = 2.0°
Absorption correction: numerical (IPDS Software; Stoe & Cie, 1999) h = −43→43
Tmin = 0.648, Tmax = 0.847 k = −43→42
22832 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0371P)2] where P = (Fo2 + 2Fc2)/3
4905 reflections (Δ/σ)max = 0.002
288 parameters Δρmax = 0.57 e Å3
1 restraint Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.46298 (8) 0.12671 (8) 0.9677 (2) 0.0295 (5)
H1 0.4833 0.1173 0.9386 0.035*
C2 0.42345 (9) 0.08653 (9) 1.0248 (3) 0.0421 (7)
H3 0.4134 0.0627 0.9645 0.050*
H2 0.4330 0.0779 1.1000 0.050*
C3 0.38543 (9) 0.09245 (10) 1.0599 (3) 0.0460 (7)
H5 0.3647 0.0680 1.1110 0.055*
H4 0.3955 0.1191 1.1085 0.055*
C4 0.33026 (10) 0.10298 (12) 0.9689 (4) 0.0637 (9)
H6 0.3176 0.1040 0.8895 0.076*
H8 0.3412 0.1305 1.0117 0.076*
H7 0.3085 0.0801 1.0204 0.076*
C5 0.51631 (8) 0.14921 (9) 1.1889 (2) 0.0326 (6)
C6 0.51916 (8) 0.11198 (9) 1.1672 (2) 0.0364 (6)
H9 0.5065 0.0952 1.0951 0.044*
C7 0.54086 (9) 0.09969 (10) 1.2528 (3) 0.0479 (7)
H10 0.5426 0.0747 1.2378 0.057*
C8 0.55965 (10) 0.12407 (13) 1.3589 (3) 0.0599 (9)
H11 0.5745 0.1159 1.4153 0.072*
C9 0.55662 (11) 0.16073 (13) 1.3820 (3) 0.0639 (10)
H12 0.5693 0.1771 1.4546 0.077*
C10 0.53482 (9) 0.17353 (10) 1.2982 (3) 0.0468 (7)
H13 0.5326 0.1982 1.3149 0.056*
C11 0.51525 (8) 0.20375 (8) 0.7377 (2) 0.0314 (5)
C12 0.55158 (9) 0.19985 (9) 0.7660 (3) 0.0414 (6)
H14 0.5480 0.1765 0.8153 0.050*
C13 0.59285 (10) 0.22978 (10) 0.7227 (3) 0.0519 (8)
H15 0.6167 0.2264 0.7424 0.062*
C14 0.59838 (10) 0.26436 (11) 0.6508 (3) 0.0576 (9)
H16 0.6261 0.2847 0.6217 0.069*
C15 0.56311 (11) 0.26918 (11) 0.6216 (4) 0.0666 (10)
H17 0.5670 0.2928 0.5730 0.080*
C16 0.52209 (9) 0.23920 (9) 0.6638 (3) 0.0486 (8)
H18 0.4985 0.2427 0.6426 0.058*
C17 0.41851 (8) 0.11558 (8) 0.6483 (2) 0.0272 (5)
C18 0.38006 (8) 0.07525 (8) 0.6555 (2) 0.0323 (6)
H19 0.3660 0.0654 0.7330 0.039*
C19 0.36252 (9) 0.04966 (9) 0.5481 (3) 0.0370 (6)
H20 0.3370 0.0227 0.5544 0.044*
C20 0.38254 (9) 0.06382 (10) 0.4326 (3) 0.0425 (7)
H21 0.3706 0.0465 0.3611 0.051*
C21 0.42028 (10) 0.10362 (10) 0.4230 (3) 0.0496 (7)
H22 0.4337 0.1135 0.3448 0.060*
C22 0.43828 (9) 0.12899 (9) 0.5303 (2) 0.0389 (6)
H23 0.4642 0.1556 0.5232 0.047*
C23 0.41951 (8) 0.19495 (8) 0.8547 (2) 0.0303 (5)
C24 0.38656 (9) 0.19384 (9) 0.7791 (3) 0.0392 (6)
H24 0.3785 0.1775 0.7049 0.047*
C25 0.36561 (9) 0.21676 (10) 0.8130 (3) 0.0488 (8)
H25 0.3439 0.2158 0.7612 0.059*
C26 0.37677 (10) 0.24078 (10) 0.9222 (3) 0.0515 (8)
H26 0.3624 0.2557 0.9452 0.062*
C27 0.40953 (11) 0.24266 (10) 0.9980 (3) 0.0515 (8)
H27 0.4174 0.2590 1.0721 0.062*
C28 0.43065 (9) 0.22026 (9) 0.9638 (3) 0.0411 (6)
H28 0.4529 0.2222 1.0151 0.049*
C29 0.6516 (4) 0.28958 (16) 0.3333 0.240 (8)
H29 0.6412 0.2597 0.3333 0.288*
O 0.36531 (6) 0.09476 (7) 0.94676 (18) 0.0436 (5)
S 0.49207 (2) 0.16969 (2) 1.08222 (6) 0.03528 (15)
Sn 0.450886 (5) 0.158288 (5) 0.805962 (15) 0.02691 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0326 (13) 0.0278 (13) 0.0288 (12) 0.0156 (11) −0.0092 (10) −0.0061 (10)
C2 0.0369 (16) 0.0352 (15) 0.0466 (16) 0.0124 (13) −0.0094 (12) 0.0065 (12)
C3 0.0356 (16) 0.0497 (18) 0.0361 (15) 0.0090 (14) 0.0010 (12) 0.0098 (13)
C4 0.0358 (18) 0.062 (2) 0.090 (3) 0.0214 (16) 0.0102 (16) 0.0190 (19)
C5 0.0211 (12) 0.0434 (15) 0.0255 (12) 0.0102 (11) 0.0017 (9) 0.0030 (10)
C6 0.0293 (14) 0.0427 (16) 0.0348 (14) 0.0163 (12) −0.0009 (11) 0.0041 (11)
C7 0.0363 (16) 0.0532 (19) 0.0528 (18) 0.0214 (15) 0.0000 (13) 0.0169 (14)
C8 0.0445 (19) 0.075 (2) 0.0509 (19) 0.0233 (18) −0.0127 (15) 0.0145 (17)
C9 0.058 (2) 0.082 (3) 0.0319 (16) 0.0205 (19) −0.0189 (14) −0.0066 (15)
C10 0.0459 (17) 0.0558 (19) 0.0315 (15) 0.0199 (15) −0.0080 (12) −0.0050 (13)
C11 0.0300 (13) 0.0280 (13) 0.0336 (13) 0.0125 (11) −0.0039 (10) −0.0024 (10)
C12 0.0377 (16) 0.0354 (15) 0.0548 (17) 0.0210 (13) 0.0004 (13) 0.0060 (13)
C13 0.0337 (16) 0.054 (2) 0.071 (2) 0.0250 (15) 0.0023 (14) 0.0104 (16)
C14 0.0305 (16) 0.0508 (19) 0.077 (2) 0.0095 (14) 0.0039 (15) 0.0191 (17)
C15 0.047 (2) 0.052 (2) 0.093 (3) 0.0186 (17) 0.0033 (18) 0.0370 (19)
C16 0.0344 (16) 0.0430 (17) 0.068 (2) 0.0191 (14) −0.0056 (14) 0.0145 (14)
C17 0.0274 (13) 0.0287 (13) 0.0296 (12) 0.0171 (11) −0.0063 (10) −0.0038 (10)
C18 0.0302 (14) 0.0347 (14) 0.0336 (13) 0.0176 (12) −0.0006 (10) 0.0007 (11)
C19 0.0298 (14) 0.0330 (14) 0.0455 (16) 0.0137 (12) −0.0071 (11) −0.0076 (12)
C20 0.0434 (16) 0.0478 (17) 0.0387 (15) 0.0245 (14) −0.0101 (12) −0.0176 (13)
C21 0.0495 (18) 0.058 (2) 0.0286 (15) 0.0178 (16) 0.0029 (12) −0.0052 (13)
C22 0.0351 (15) 0.0398 (16) 0.0319 (14) 0.0114 (12) −0.0002 (11) −0.0019 (11)
C23 0.0284 (13) 0.0250 (13) 0.0347 (13) 0.0114 (11) 0.0012 (10) 0.0034 (10)
C24 0.0380 (15) 0.0362 (15) 0.0436 (15) 0.0186 (13) −0.0100 (12) −0.0035 (12)
C25 0.0374 (16) 0.0437 (17) 0.072 (2) 0.0250 (14) −0.0152 (14) −0.0006 (15)
C26 0.0517 (19) 0.0409 (17) 0.074 (2) 0.0325 (16) 0.0040 (16) 0.0000 (15)
C27 0.063 (2) 0.0462 (18) 0.0528 (18) 0.0328 (16) −0.0086 (15) −0.0151 (14)
C28 0.0457 (17) 0.0374 (15) 0.0468 (16) 0.0257 (14) −0.0118 (12) −0.0081 (12)
C29 0.131 (6) 0.323 (12) 0.148 (6) 0.026 (10) 0.042 (5) −0.081 (9)
O 0.0355 (11) 0.0527 (12) 0.0421 (11) 0.0217 (10) −0.0037 (8) 0.0044 (9)
S 0.0414 (4) 0.0333 (3) 0.0324 (3) 0.0197 (3) −0.0108 (3) −0.0076 (3)
Sn 0.02727 (10) 0.02668 (10) 0.02675 (10) 0.01346 (8) −0.00504 (6) −0.00283 (6)

Geometric parameters (Å, °)

C1—C2 1.532 (4) C14—C15 1.375 (5)
C1—S 1.807 (2) C14—H16 0.9300
C1—Sn 2.196 (2) C15—C16 1.374 (4)
C1—H1 0.9800 C15—H17 0.9300
C2—C3 1.506 (4) C16—H18 0.9300
C2—H3 0.9700 C17—C22 1.392 (3)
C2—H2 0.9700 C17—C18 1.395 (3)
C3—O 1.414 (3) C17—Sn 2.153 (2)
C3—H5 0.9700 C18—C19 1.389 (4)
C3—H4 0.9700 C18—H19 0.9300
C4—O 1.426 (4) C19—C20 1.373 (4)
C4—H6 0.9600 C19—H20 0.9300
C4—H8 0.9600 C20—C21 1.375 (4)
C4—H7 0.9600 C20—H21 0.9300
C5—C6 1.388 (4) C21—C22 1.387 (4)
C5—C10 1.391 (4) C21—H22 0.9300
C5—S 1.774 (3) C22—H23 0.9300
C6—C7 1.389 (4) C23—C28 1.390 (4)
C6—H9 0.9300 C23—C24 1.396 (4)
C7—C8 1.367 (5) C23—Sn 2.147 (2)
C7—H10 0.9300 C24—C25 1.390 (4)
C8—C9 1.374 (5) C24—H24 0.9300
C8—H11 0.9300 C25—C26 1.368 (4)
C9—C10 1.390 (5) C25—H25 0.9300
C9—H12 0.9300 C26—C27 1.381 (4)
C10—H13 0.9300 C26—H26 0.9300
C11—C12 1.391 (4) C27—C28 1.380 (4)
C11—C16 1.391 (4) C27—H27 0.9300
C11—Sn 2.150 (2) C28—H28 0.9300
C12—C13 1.382 (4) C29—C29i 1.360 (5)
C12—H14 0.9300 C29—C29ii 1.360 (5)
C13—C14 1.368 (4) C29—H29 0.9300
C13—H15 0.9300
C2—C1—S 112.78 (18) C16—C15—C14 120.3 (3)
C2—C1—Sn 117.27 (16) C16—C15—H17 119.9
S—C1—Sn 105.52 (11) C14—C15—H17 119.9
C2—C1—H1 106.9 C15—C16—C11 121.2 (3)
S—C1—H1 106.9 C15—C16—H18 119.4
Sn—C1—H1 106.9 C11—C16—H18 119.4
C3—C2—C1 115.6 (2) C22—C17—C18 117.6 (2)
C3—C2—H3 108.4 C22—C17—Sn 117.01 (17)
C1—C2—H3 108.4 C18—C17—Sn 125.37 (18)
C3—C2—H2 108.4 C19—C18—C17 120.7 (2)
C1—C2—H2 108.4 C19—C18—H19 119.7
H3—C2—H2 107.5 C17—C18—H19 119.7
O—C3—C2 108.0 (2) C20—C19—C18 120.5 (2)
O—C3—H5 110.1 C20—C19—H20 119.7
C2—C3—H5 110.1 C18—C19—H20 119.7
O—C3—H4 110.1 C19—C20—C21 119.8 (2)
C2—C3—H4 110.1 C19—C20—H21 120.1
H5—C3—H4 108.4 C21—C20—H21 120.1
O—C4—H6 109.5 C20—C21—C22 119.9 (3)
O—C4—H8 109.5 C20—C21—H22 120.1
H6—C4—H8 109.5 C22—C21—H22 120.1
O—C4—H7 109.5 C21—C22—C17 121.5 (3)
H6—C4—H7 109.5 C21—C22—H23 119.3
H8—C4—H7 109.5 C17—C22—H23 119.3
C6—C5—C10 119.2 (2) C28—C23—C24 117.1 (2)
C6—C5—S 124.04 (19) C28—C23—Sn 121.46 (18)
C10—C5—S 116.7 (2) C24—C23—Sn 121.40 (19)
C5—C6—C7 120.1 (3) C25—C24—C23 121.1 (3)
C5—C6—H9 119.9 C25—C24—H24 119.5
C7—C6—H9 119.9 C23—C24—H24 119.5
C8—C7—C6 120.5 (3) C26—C25—C24 120.4 (3)
C8—C7—H10 119.7 C26—C25—H25 119.8
C6—C7—H10 119.7 C24—C25—H25 119.8
C7—C8—C9 119.8 (3) C25—C26—C27 119.5 (3)
C7—C8—H11 120.1 C25—C26—H26 120.2
C9—C8—H11 120.1 C27—C26—H26 120.2
C8—C9—C10 120.7 (3) C28—C27—C26 120.1 (3)
C8—C9—H12 119.6 C28—C27—H27 120.0
C10—C9—H12 119.6 C26—C27—H27 120.0
C9—C10—C5 119.6 (3) C27—C28—C23 121.7 (3)
C9—C10—H13 120.2 C27—C28—H28 119.1
C5—C10—H13 120.2 C23—C28—H28 119.1
C12—C11—C16 117.2 (2) C29i—C29—C29ii 120.006 (1)
C12—C11—Sn 122.56 (19) C29i—C29—H29 120.0
C16—C11—Sn 120.26 (19) C29ii—C29—H29 120.0
C13—C12—C11 121.8 (3) C3—O—C4 112.7 (2)
C13—C12—H14 119.1 C5—S—C1 105.70 (12)
C11—C12—H14 119.1 C23—Sn—C11 107.59 (9)
C14—C13—C12 119.5 (3) C23—Sn—C17 110.79 (9)
C14—C13—H15 120.3 C11—Sn—C17 104.90 (9)
C12—C13—H15 120.3 C23—Sn—C1 114.23 (9)
C13—C14—C15 120.2 (3) C11—Sn—C1 103.82 (9)
C13—C14—H16 119.9 C17—Sn—C1 114.57 (9)
C15—C14—H16 119.9
S—C1—C2—C3 70.6 (3) C26—C27—C28—C23 −0.9 (5)
Sn—C1—C2—C3 −52.3 (3) C24—C23—C28—C27 1.4 (4)
C1—C2—C3—O 71.8 (3) Sn—C23—C28—C27 −177.6 (2)
C10—C5—C6—C7 −1.0 (4) C2—C3—O—C4 −176.5 (2)
S—C5—C6—C7 176.4 (2) C6—C5—S—C1 12.6 (2)
C5—C6—C7—C8 −0.1 (4) C10—C5—S—C1 −170.0 (2)
C6—C7—C8—C9 0.8 (5) C2—C1—S—C5 68.1 (2)
C7—C8—C9—C10 −0.4 (5) Sn—C1—S—C5 −162.64 (11)
C8—C9—C10—C5 −0.7 (5) C28—C23—Sn—C11 −74.8 (2)
C6—C5—C10—C9 1.4 (4) C24—C23—Sn—C11 106.2 (2)
S—C5—C10—C9 −176.2 (2) C28—C23—Sn—C17 171.1 (2)
C16—C11—C12—C13 −0.1 (4) C24—C23—Sn—C17 −7.9 (2)
Sn—C11—C12—C13 −179.0 (2) C28—C23—Sn—C1 39.9 (2)
C11—C12—C13—C14 0.4 (5) C24—C23—Sn—C1 −139.1 (2)
C12—C13—C14—C15 −0.2 (6) C16—C11—Sn—C23 −37.7 (2)
C13—C14—C15—C16 −0.3 (6) C12—C11—Sn—C23 141.3 (2)
C14—C15—C16—C11 0.7 (6) C16—C11—Sn—C17 80.3 (2)
C12—C11—C16—C15 −0.5 (5) C12—C11—Sn—C17 −100.7 (2)
Sn—C11—C16—C15 178.5 (3) C16—C11—Sn—C1 −159.1 (2)
C22—C17—C18—C19 0.2 (4) C12—C11—Sn—C1 19.8 (2)
Sn—C17—C18—C19 −178.21 (18) C22—C17—Sn—C23 101.8 (2)
C17—C18—C19—C20 −0.6 (4) C18—C17—Sn—C23 −79.8 (2)
C18—C19—C20—C21 0.1 (4) C22—C17—Sn—C11 −14.0 (2)
C19—C20—C21—C22 0.9 (5) C18—C17—Sn—C11 164.4 (2)
C20—C21—C22—C17 −1.4 (5) C22—C17—Sn—C1 −127.14 (19)
C18—C17—C22—C21 0.8 (4) C18—C17—Sn—C1 51.2 (2)
Sn—C17—C22—C21 179.4 (2) C2—C1—Sn—C23 73.5 (2)
C28—C23—C24—C25 −0.7 (4) S—C1—Sn—C23 −52.99 (14)
Sn—C23—C24—C25 178.3 (2) C2—C1—Sn—C11 −169.59 (19)
C23—C24—C25—C26 −0.4 (5) S—C1—Sn—C11 63.88 (13)
C24—C25—C26—C27 0.9 (5) C2—C1—Sn—C17 −55.8 (2)
C25—C26—C27—C28 −0.3 (5) S—C1—Sn—C17 177.69 (10)

Symmetry codes: (i) y+1/3, −x+y+2/3, −z+2/3; (ii) xy+1/3, x−1/3, −z+2/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5011).

References

  1. Block, M., Linnert, M., Gomez-Ruiz, S. & Steinborn, D. (2009). J. Organomet. Chem. 694, 3353–3361.
  2. Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Kauffmann, T., Kriegesmann, R. & Hamsen, A. (1982). Chem. Ber. 115, 1818–1824.
  4. Linnert, M., Wagner, C., Merzweiler, K. & Steinborn, D. (2008). Z. Anorg. Allg. Chem. 634, 43–48.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Stoe & Cie (1999). IPDS EXPOSE and IPDS INTEGRATE Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811055474/is5011sup1.cif

e-68-0m149-sup1.cif (33KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055474/is5011Isup2.hkl

e-68-0m149-Isup2.hkl (240.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES