Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 18;68(Pt 2):m163. doi: 10.1107/S1600536812001031

Poly[(μ2-quinoline-3-carboxyl­ato-κ2 N:O)(μ2-quinoline-3-carboxyl­ato-κ3 N:O,O′)cadmium]

Xing Wang a, Yong-Sheng Yan a, He-Yi Sun a, Shen-Tang Wang a, Chun-Bo Liu a,*
PMCID: PMC3274893  PMID: 22346840

Abstract

In the title compound, [Cd(C10H6NO2)2]n, the CdII atom is coordinated by three O atoms and two N atoms from four quinoline-3-carboxyl­ate (L ) ligands, leading to a distorted trigonal–bipyramidal geometry. The L ligands link the CdII atoms into a plane parallel to (100), with one ligand being tridentate, coordinating via the N atom and chelating a second Cd atom, and the other being bidentate, bridging two Cd atoms via the N and one O atom.. This two-dimensional network extends into a double-layer network by π–π inter­actions, with centroid–centroid distances of 3.680 (2) and 3.752 (2) Å. Another type of π–π inter­action between pyridine rings [centroid–centroid distance = 3.527 (2) Å] leads to a three-dimensional supra­molecular architecture.

Related literature

For background to the applications of cadmium coordination polymers and nicotinic acids, see: Niu et al. (2006); Song et al. (2006), Chen (2003); Chi et al. (2007); Lu et al. (2007). For a closely related structure, see: Hu et al. (2007).graphic file with name e-68-0m163-scheme1.jpg

Experimental

Crystal data

  • [Cd(C10H6NO2)2]

  • M r = 456.72

  • Monoclinic, Inline graphic

  • a = 28.5458 (19) Å

  • b = 8.2274 (5) Å

  • c = 15.381 (1) Å

  • β = 112.708 (1)°

  • V = 3332.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 153 K

  • 0.13 × 0.11 × 0.10 mm

Data collection

  • Rigaku Saturn 724+ CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.845, T max = 0.910

  • 7361 measured reflections

  • 3014 independent reflections

  • 2659 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019

  • wR(F 2) = 0.051

  • S = 1.10

  • 3014 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalClear (Rigaku, 2007) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001031/vn2029sup1.cif

e-68-0m163-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001031/vn2029Isup2.hkl

e-68-0m163-Isup2.hkl (145KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—N1i 2.3410 (16)
Cd1—N2 2.3188 (17)
Cd1—O1 2.1625 (15)
Cd1—O3ii 2.3858 (15)
Cd1—O4ii 2.2770 (15)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are thankful to Jiangsu University for support of this research.

supplementary crystallographic information

Comment

To date, much effort has been made on the construction of cadmium coordination polymers with a wide variety of topological structures which may possess promising perspectives toward molecular luminescent materials (Chi et al., 2007; Niu et al., 2006; Song et al., 2006; Lu et al., 2007). It is well known that nicotinic acid has been proved to be effective for constructing coordination polymers due to the versatile coordination fashion (Chen et al., 2003; Song et al., 2006). Compared with nicotinic acid, the structurally similar quinoline-3-carboxylic acid (HL) have been chosen to construct a new coordination polymer. Here, we report on the crystal structure of the title compound.

There is one cadmium (II) atom and two independent L- ligands in the asymmetric unit. The Cd (II) atom is five-coordinated by two N atoms [Cd1—N1ii=2.341 (2) Å, Cd1—N2=2.319 (2) Å] and three O atoms [Cd1—O1=2.163 (2) Å, Cd—O3i=2.386 (2) Å, Cd—O4i=2.277 (2) Å] from four L- ligands, showing a distorted trigonal bipyramidal coordination geometry (Fig. 1). The L- ligand containing the N1 atom, acts as bis-monodentate mode toward cadmium centers with pyridine nitrogen atoms linking the cadmium atom and the carboxylate group linking the cadmium atom in a monodentate fashion, leading to the formation of a 1D chain structure along the the b axis. The 1D chains are linked into a 2D layer network by bis-chelating L- ligand containing the N2 atom, There is in addition a 2D double-layer structure (black bond and green bond) which is connected by π–π interactions with the centroid to centroid distances of 3.680 (2) and 3.752 (2) Å, respectively (Fig. 2). The 2D double-layers are parallel to the (100) plane, and linked to each other by another type of π–π interaction between pyridine rings [centroid-to-centroid 3.527 (2) Å], resulting in a 3D supramolecular architecture.

There is a reported isostructural Zn analogue (Hu et al., 2007) which has a tetrahedral environment with L- in a bis-monodentate mode, while the title compound shows a distorted trigonal bipyramidal coordination geometry with L- in bis-monodentate and bis-chelating modes, respectively (Fig. 3). This comparison reveals the influence of different metal ion on the coordination mode of the ligand.

Experimental

Quinoline-3-carboxylic acid (HL) was purchased commercially and used without further purification. A mixture of CdCl2 (18.400 mg, 0.1 mmol), and HL (17.300 mg, 0.1 mmol) was dissolved in a 10 mL of water with a pH = 6. The resulting mixture was heated in a 15 mL autoclave with Teflon-liner at 438 K for three days. Then the autoclave was slowly cooled to room temperature, and colourless block-shaped crystals were obtained with a yield of 50 %.

Refinement

All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were positioned geometrically and refined using a riding model with C—H distances of 0.93 Å and Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound showing displacement ellipsoids (drawn at a 30% probability level) and labeling. H atoms are drawn as a small spheres of arbitrary radius. [symmetry codes: (i) x, - y, z + 1/2; (ii) x, y - 1, z.]

Fig. 2.

Fig. 2.

2D double-layer structure and π-π stacking interactions between different 2D layers. All hydrogen atoms were omitted for clarity.

Fig. 3.

Fig. 3.

The comparision of the metal coordination environment between a reported isostructural Zn analogue and the title compound.

Crystal data

[Cd(C10H6NO2)2] F(000) = 1808
Mr = 456.72 Dx = 1.821 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6971 reflections
a = 28.5458 (19) Å θ = 2.8–29.2°
b = 8.2274 (5) Å µ = 1.34 mm1
c = 15.381 (1) Å T = 153 K
β = 112.708 (1)° Prism, colourless
V = 3332.3 (4) Å3 0.13 × 0.11 × 0.10 mm
Z = 8

Data collection

Rigaku Saturn 724+ CCD area-detector diffractometer 3014 independent reflections
Radiation source: fine-focus sealed tube 2659 reflections with I > 2σ(I)
graphite Rint = 0.015
Detector resolution: 28.5714 pixels mm-1 θmax = 25.3°, θmin = 3.1°
ω scans h = −34→34
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) k = −9→9
Tmin = 0.845, Tmax = 0.910 l = −12→18
7361 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.9823P] where P = (Fo2 + 2Fc2)/3
3014 reflections (Δ/σ)max = 0.002
244 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.34654 (8) 0.4503 (3) 0.04346 (16) 0.0215 (5)
C2 0.32133 (8) 0.6060 (2) −0.00212 (15) 0.0175 (4)
C3 0.34221 (7) 0.7571 (2) 0.03538 (14) 0.0179 (4)
H3 0.3719 0.7577 0.0895 0.021*
C4 0.27770 (8) 0.8986 (2) −0.08096 (14) 0.0171 (4)
C5 0.25472 (8) 0.7512 (2) −0.12288 (15) 0.0184 (4)
C6 0.27767 (8) 0.6043 (2) −0.08109 (15) 0.0196 (5)
H6 0.2630 0.5057 −0.1074 0.023*
C7 0.25462 (8) 1.0467 (3) −0.12039 (16) 0.0229 (5)
H7 0.2697 1.1447 −0.0939 0.028*
C8 0.20978 (9) 1.0464 (3) −0.19802 (16) 0.0285 (5)
H8 0.1940 1.1444 −0.2227 0.034*
C9 0.18757 (9) 0.9000 (3) −0.24036 (17) 0.0305 (6)
H9 0.1577 0.9019 −0.2941 0.037*
C10 0.20908 (8) 0.7552 (3) −0.20397 (16) 0.0251 (5)
H10 0.1938 0.6587 −0.2324 0.030*
C11 0.40746 (8) 0.0031 (2) −0.24972 (14) 0.0197 (5)
C12 0.43039 (8) 0.0798 (2) −0.15411 (14) 0.0176 (4)
C13 0.40592 (8) 0.0688 (2) −0.09095 (14) 0.0186 (4)
H13 0.3751 0.0139 −0.1106 0.022*
C14 0.47532 (8) 0.1623 (3) −0.12613 (15) 0.0203 (5)
H14 0.4921 0.1728 −0.1671 0.024*
C15 0.49631 (8) 0.2315 (2) −0.03555 (14) 0.0191 (5)
C16 0.46983 (8) 0.2114 (2) 0.02540 (14) 0.0175 (4)
C17 0.49105 (8) 0.2735 (2) 0.11748 (15) 0.0223 (5)
H17 0.4741 0.2599 0.1579 0.027*
C18 0.53653 (9) 0.3542 (3) 0.14796 (16) 0.0273 (5)
H18 0.5507 0.3935 0.2094 0.033*
C19 0.56197 (9) 0.3778 (3) 0.08655 (18) 0.0305 (6)
H19 0.5925 0.4344 0.1074 0.037*
C20 0.54238 (8) 0.3188 (3) −0.00257 (17) 0.0275 (5)
H20 0.5595 0.3361 −0.0424 0.033*
N1 0.32245 (6) 0.89871 (19) −0.00119 (12) 0.0168 (4)
N2 0.42383 (6) 0.13141 (19) −0.00532 (12) 0.0174 (4)
O1 0.32218 (6) 0.32240 (18) 0.00681 (12) 0.0311 (4)
O2 0.38802 (6) 0.45193 (19) 0.11082 (12) 0.0291 (4)
O3 0.36675 (6) −0.07521 (18) −0.27266 (10) 0.0245 (3)
O4 0.43035 (6) 0.02228 (19) −0.30471 (10) 0.0268 (4)
Cd1 0.371129 (5) 0.122196 (17) 0.077597 (10) 0.01700 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0258 (12) 0.0175 (11) 0.0264 (12) 0.0042 (10) 0.0158 (10) 0.0032 (9)
C2 0.0195 (11) 0.0155 (10) 0.0209 (11) 0.0021 (9) 0.0117 (9) 0.0024 (8)
C3 0.0165 (11) 0.0186 (11) 0.0186 (11) 0.0012 (9) 0.0068 (9) 0.0008 (9)
C4 0.0174 (10) 0.0187 (11) 0.0170 (11) 0.0003 (9) 0.0086 (9) 0.0014 (8)
C5 0.0182 (10) 0.0185 (10) 0.0200 (11) 0.0000 (9) 0.0091 (9) 0.0000 (9)
C6 0.0230 (11) 0.0142 (10) 0.0232 (12) −0.0025 (9) 0.0108 (10) −0.0027 (8)
C7 0.0253 (12) 0.0172 (11) 0.0256 (12) 0.0001 (10) 0.0092 (10) 0.0016 (9)
C8 0.0295 (13) 0.0254 (12) 0.0281 (13) 0.0087 (11) 0.0084 (11) 0.0100 (10)
C9 0.0237 (12) 0.0371 (14) 0.0228 (13) 0.0031 (11) 0.0003 (10) 0.0048 (10)
C10 0.0222 (12) 0.0255 (12) 0.0233 (12) −0.0031 (10) 0.0040 (10) −0.0016 (10)
C11 0.0226 (12) 0.0175 (10) 0.0163 (11) 0.0082 (10) 0.0044 (9) 0.0018 (8)
C12 0.0197 (11) 0.0166 (10) 0.0143 (11) 0.0043 (9) 0.0042 (9) −0.0002 (8)
C13 0.0194 (11) 0.0176 (10) 0.0178 (11) −0.0007 (9) 0.0060 (9) 0.0002 (8)
C14 0.0208 (11) 0.0224 (11) 0.0188 (11) 0.0031 (9) 0.0090 (9) 0.0018 (9)
C15 0.0172 (11) 0.0183 (10) 0.0195 (12) 0.0028 (9) 0.0046 (9) 0.0004 (9)
C16 0.0201 (11) 0.0128 (10) 0.0182 (11) 0.0026 (9) 0.0057 (9) 0.0012 (8)
C17 0.0266 (12) 0.0218 (11) 0.0176 (11) −0.0006 (10) 0.0076 (9) −0.0023 (9)
C18 0.0303 (13) 0.0255 (12) 0.0196 (12) −0.0020 (11) 0.0024 (10) −0.0051 (9)
C19 0.0218 (12) 0.0324 (14) 0.0328 (14) −0.0109 (11) 0.0058 (10) −0.0083 (10)
C20 0.0232 (12) 0.0304 (12) 0.0309 (14) −0.0061 (10) 0.0126 (11) −0.0029 (10)
N1 0.0178 (9) 0.0149 (9) 0.0176 (9) 0.0008 (7) 0.0067 (7) 0.0006 (7)
N2 0.0206 (9) 0.0171 (9) 0.0145 (9) −0.0007 (7) 0.0067 (7) 0.0002 (7)
O1 0.0345 (9) 0.0137 (7) 0.0371 (10) 0.0016 (7) 0.0048 (8) 0.0015 (7)
O2 0.0267 (9) 0.0256 (9) 0.0300 (9) 0.0065 (7) 0.0054 (7) 0.0070 (7)
O3 0.0273 (9) 0.0259 (8) 0.0190 (8) −0.0054 (7) 0.0075 (7) −0.0051 (6)
O4 0.0263 (8) 0.0382 (9) 0.0167 (8) −0.0031 (7) 0.0090 (7) −0.0073 (7)
Cd1 0.02126 (10) 0.01480 (10) 0.01451 (10) 0.00057 (6) 0.00642 (7) 0.00132 (6)

Geometric parameters (Å, °)

C1—O2 1.236 (3) C12—C13 1.401 (3)
C1—O1 1.267 (3) C13—N2 1.320 (3)
C1—C2 1.504 (3) C13—H13 0.9300
C2—C6 1.364 (3) C14—C15 1.407 (3)
C2—C3 1.403 (3) C14—H14 0.9300
C3—N1 1.322 (3) C15—C20 1.410 (3)
C3—H3 0.9300 C15—C16 1.423 (3)
C4—N1 1.388 (3) C16—N2 1.379 (3)
C4—C7 1.407 (3) C16—C17 1.404 (3)
C4—C5 1.411 (3) C17—C18 1.370 (3)
C5—C6 1.406 (3) C17—H17 0.9300
C5—C10 1.414 (3) C18—C19 1.410 (3)
C6—H6 0.9300 C18—H18 0.9300
C7—C8 1.373 (3) C19—C20 1.355 (3)
C7—H7 0.9300 C19—H19 0.9300
C8—C9 1.399 (3) C20—H20 0.9300
C8—H8 0.9300 N1—Cd1ii 2.3410 (16)
C9—C10 1.358 (3) O3—Cd1i 2.3858 (15)
C9—H9 0.9300 O4—Cd1i 2.2770 (15)
C10—H10 0.9300 Cd1—N1iii 2.3410 (16)
C11—O3 1.255 (3) Cd1—N2 2.3188 (17)
C11—O4 1.262 (2) Cd1—O1 2.1625 (15)
C11—C12 1.499 (3) Cd1—O3iv 2.3858 (15)
C11—Cd1i 2.658 (2) Cd1—O4iv 2.2770 (15)
C12—C14 1.366 (3) Cd1—C11iv 2.658 (2)
O2—C1—O1 124.4 (2) C15—C14—H14 119.9
O2—C1—C2 120.84 (19) C14—C15—C20 123.0 (2)
O1—C1—C2 114.72 (19) C14—C15—C16 118.29 (19)
C6—C2—C3 118.19 (18) C20—C15—C16 118.76 (19)
C6—C2—C1 120.99 (19) N2—C16—C17 120.15 (18)
C3—C2—C1 120.81 (19) N2—C16—C15 120.50 (18)
N1—C3—C2 124.21 (19) C17—C16—C15 119.35 (19)
N1—C3—H3 117.9 C18—C17—C16 120.3 (2)
C2—C3—H3 117.9 C18—C17—H17 119.9
N1—C4—C7 119.89 (18) C16—C17—H17 119.9
N1—C4—C5 120.76 (18) C17—C18—C19 120.2 (2)
C7—C4—C5 119.35 (19) C17—C18—H18 119.9
C6—C5—C4 118.53 (19) C19—C18—H18 119.9
C6—C5—C10 122.08 (19) C20—C19—C18 120.7 (2)
C4—C5—C10 119.38 (19) C20—C19—H19 119.6
C2—C6—C5 120.16 (19) C18—C19—H19 119.6
C2—C6—H6 119.9 C19—C20—C15 120.7 (2)
C5—C6—H6 119.9 C19—C20—H20 119.7
C8—C7—C4 119.8 (2) C15—C20—H20 119.7
C8—C7—H7 120.1 C3—N1—C4 118.13 (17)
C4—C7—H7 120.1 C3—N1—Cd1ii 113.66 (13)
C7—C8—C9 120.6 (2) C4—N1—Cd1ii 128.17 (13)
C7—C8—H8 119.7 C13—N2—C16 118.63 (17)
C9—C8—H8 119.7 C13—N2—Cd1 116.90 (14)
C10—C9—C8 120.8 (2) C16—N2—Cd1 124.15 (13)
C10—C9—H9 119.6 C1—O1—Cd1 105.75 (14)
C8—C9—H9 119.6 C11—O3—Cd1i 88.09 (12)
C9—C10—C5 120.0 (2) C11—O4—Cd1i 92.87 (13)
C9—C10—H10 120.0 O1—Cd1—O4iv 159.22 (6)
C5—C10—H10 120.0 O1—Cd1—N2 97.38 (6)
O3—C11—O4 122.58 (19) O4iv—Cd1—N2 90.81 (5)
O3—C11—C12 119.90 (19) O1—Cd1—N1iii 101.45 (6)
O4—C11—C12 117.52 (19) O4iv—Cd1—N1iii 96.41 (6)
O3—C11—Cd1i 63.76 (11) N2—Cd1—N1iii 97.04 (6)
O4—C11—Cd1i 58.81 (11) O1—Cd1—O3iv 110.18 (6)
C12—C11—Cd1i 176.28 (16) O4iv—Cd1—O3iv 56.46 (5)
C14—C12—C13 118.20 (19) N2—Cd1—O3iv 145.40 (6)
C14—C12—C11 121.32 (19) N1iii—Cd1—O3iv 97.50 (6)
C13—C12—C11 120.49 (19) O1—Cd1—C11iv 136.51 (7)
N2—C13—C12 124.2 (2) O4iv—Cd1—C11iv 28.31 (6)
N2—C13—H13 117.9 N2—Cd1—C11iv 118.46 (6)
C12—C13—H13 117.9 N1iii—Cd1—C11iv 97.88 (6)
C12—C14—C15 120.2 (2) O3iv—Cd1—C11iv 28.14 (6)
C12—C14—H14 119.9
O2—C1—C2—C6 174.6 (2) C17—C18—C19—C20 −1.2 (4)
O1—C1—C2—C6 −4.8 (3) C18—C19—C20—C15 −0.5 (4)
O2—C1—C2—C3 −5.2 (3) C14—C15—C20—C19 −177.5 (2)
O1—C1—C2—C3 175.38 (19) C16—C15—C20—C19 2.2 (3)
C6—C2—C3—N1 −0.4 (3) C2—C3—N1—C4 1.1 (3)
C1—C2—C3—N1 179.44 (18) C2—C3—N1—Cd1ii −176.85 (15)
N1—C4—C5—C6 1.1 (3) C7—C4—N1—C3 178.10 (19)
C7—C4—C5—C6 −178.4 (2) C5—C4—N1—C3 −1.4 (3)
N1—C4—C5—C10 179.84 (19) C7—C4—N1—Cd1ii −4.3 (3)
C7—C4—C5—C10 0.3 (3) C5—C4—N1—Cd1ii 176.15 (14)
C3—C2—C6—C5 0.0 (3) C12—C13—N2—C16 −0.8 (3)
C1—C2—C6—C5 −179.81 (18) C12—C13—N2—Cd1 172.89 (16)
C4—C5—C6—C2 −0.4 (3) C17—C16—N2—C13 −177.34 (19)
C10—C5—C6—C2 −179.1 (2) C15—C16—N2—C13 2.5 (3)
N1—C4—C7—C8 −178.5 (2) C17—C16—N2—Cd1 9.4 (3)
C5—C4—C7—C8 1.0 (3) C15—C16—N2—Cd1 −170.71 (14)
C4—C7—C8—C9 −2.1 (4) O2—C1—O1—Cd1 −5.0 (3)
C7—C8—C9—C10 1.9 (4) C2—C1—O1—Cd1 174.42 (14)
C8—C9—C10—C5 −0.6 (4) O4—C11—O3—Cd1i −0.1 (2)
C6—C5—C10—C9 178.2 (2) C12—C11—O3—Cd1i 179.26 (17)
C4—C5—C10—C9 −0.5 (3) O3—C11—O4—Cd1i 0.1 (2)
O3—C11—C12—C14 178.30 (19) C12—C11—O4—Cd1i −179.27 (15)
O4—C11—C12—C14 −2.3 (3) C1—O1—Cd1—O4iv 33.2 (2)
O3—C11—C12—C13 −1.9 (3) C1—O1—Cd1—N2 −79.22 (14)
O4—C11—C12—C13 177.47 (19) C1—O1—Cd1—N1iii −177.98 (13)
C14—C12—C13—N2 −0.9 (3) C1—O1—Cd1—O3iv 79.52 (14)
C11—C12—C13—N2 179.27 (18) C1—O1—Cd1—C11iv 67.38 (17)
C13—C12—C14—C15 1.0 (3) C13—N2—Cd1—O1 −77.63 (15)
C11—C12—C14—C15 −179.23 (19) C16—N2—Cd1—O1 95.72 (15)
C12—C14—C15—C20 −179.7 (2) C13—N2—Cd1—O4iv 121.51 (15)
C12—C14—C15—C16 0.7 (3) C16—N2—Cd1—O4iv −65.14 (15)
C14—C15—C16—N2 −2.5 (3) C13—N2—Cd1—N1iii 24.95 (15)
C20—C15—C16—N2 177.84 (19) C16—N2—Cd1—N1iii −161.70 (15)
C14—C15—C16—C17 177.42 (19) C13—N2—Cd1—O3iv 139.20 (14)
C20—C15—C16—C17 −2.3 (3) C16—N2—Cd1—O3iv −47.45 (19)
N2—C16—C17—C18 −179.46 (19) C13—N2—Cd1—C11iv 127.90 (14)
C15—C16—C17—C18 0.7 (3) C16—N2—Cd1—C11iv −58.75 (16)
C16—C17—C18—C19 1.1 (3)

Symmetry codes: (i) x, −y, z−1/2; (ii) x, y+1, z; (iii) x, y−1, z; (iv) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2029).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Chen, H.-J. (2003). Acta Cryst. C59, m371–m372. [DOI] [PubMed]
  3. Chi, Y. X., Niu, S. Y., Jin, J., Sun, L. P., Yang, G. D. & Ye, L. (2007). Z. Anorg. Allg. Chem. 633, 1274–1278.
  4. Hu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.
  5. Lu, J. Y., Achten, M. A. & Zhang, A. W. (2007). Inorg. Chem. Commun. 10, 114–116.
  6. Niu, S. Y., Chi, Y. X., Jin, J., Yang, G. D. & Ye, L. (2006). Struct. Chem. 17, 209–216.
  7. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Song, Y. S., Yan, B. & Chen, Z. X. (2006). J. Solid State Chem. 179, 4037–4046.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001031/vn2029sup1.cif

e-68-0m163-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001031/vn2029Isup2.hkl

e-68-0m163-Isup2.hkl (145KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES