Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 21;68(Pt 2):m174. doi: 10.1107/S1600536812001493

2-Amino­pyridinium bis­(pyridine-2,6-dicarboxyl­ato)ferrate(III)

Masoud Mirzaei a,*, Hossein Eshtiagh-Hosseini a, Joel T Mague b,*
PMCID: PMC3274902  PMID: 22346849

Abstract

In the title compound, (C5H7N2)[Fe(C7H3NO4)2] or [2-apyH][Fe(pydc)2], the asymmetric unit contains an [Fe(pydc)2] (pydc is pyridine-2,6-dicarboxyl­ate) anion and a protonated 2-amino­pyridine cation ([2-apyH]+). The complex anion contains an FeIII atom within a distorted octahedral FeN2O4 coordination geometry. N—H⋯O and C—H⋯O hydrogen bonding, offset π–π stacking [centroid–centroid distance = 3.805 (13) Å] and C=O⋯π inter­actions [3.494 (14) Å] generate a three-dimensional network structure.

Related literature

For related structures, see: Mirzaei et al. (2011); Eshtiagh-Hosseini et al. (2010, 2011); Hseu et al. (1991); Marsh (1993); Aghabozorg, Nemati et al. (2007); Aghabozorg, Sadrkhanlou et al. (2007); Soleimannejad et al. (2010). For details on the importance of coordinative covalent bonds and weak inter­molecular forces in forming extended organized networks, see: Steiner (2002). For graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995).graphic file with name e-68-0m174-scheme1.jpg

Experimental

Crystal data

  • (C5H7N2)[Fe(C7H3NO4)2]

  • M r = 481.18

  • Orthorhombic, Inline graphic

  • a = 7.9288 (10) Å

  • b = 15.881 (2) Å

  • c = 30.069 (4) Å

  • V = 3786.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 100 K

  • 0.34 × 0.25 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2009) T min = 0.696, T max = 0.932

  • 62788 measured reflections

  • 5007 independent reflections

  • 4354 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.086

  • S = 1.05

  • 5007 reflections

  • 301 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812001493/rz2696sup1.cif

e-68-0m174-sup1.cif (29.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001493/rz2696Isup2.hkl

e-68-0m174-Isup2.hkl (245.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.85 (2) 1.99 (2) 2.7786 (18) 153 (2)
N4—H4A⋯O2i 0.91 (3) 2.07 (3) 2.862 (2) 145 (2)
N4—H4B⋯O6ii 0.83 (2) 1.98 (2) 2.8045 (19) 171 (2)
C3—H3⋯O4ii 0.95 2.44 3.3466 (19) 159
C12—H12⋯O5iii 0.95 2.43 3.281 (2) 150
C10—H10⋯O1iv 0.95 2.58 3.2398 (19) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors express their appreciation to the Ferdowsi University of Mashhad for financial support of this research paper (grant No. P/18).

supplementary crystallographic information

Comment

For the synthesis of supramolecular systems, coordinative covalent bonds and weak intermolecular forces are important to the assembly into extended organized networks (Steiner, 2002). Our research group has worked on the synthesis of supramolecular systems including proton transfer compounds and their complexes and are exploring the role of non-covalent interactions such as hydrogen bonding, ion pairing and π-π stacking in constructing the supramolecular crystalline compounds and their metal complexes (Mirzaei et al., 2011; Eshtiagh-Hosseini et al., 2011, Eshtiagh-Hosseini, et al., 2010).

The asymmetric unit of the title compound (I) is shown in Fig. 1. The Fe atom is hexa-coordinated by two N and four O atoms from two (pydc)2– ions resulting in a distorted octahedral coordination environment. Although it would be reasonable to consider O1, O3, O5, and O7 as the equatorial "plane" and the N1 and N2 atoms to occupy the apical positions, the geometric constraints of the pydc2- ligand generate a considerable tetrahedral distortion of this "plane" as seen from the angles O1–Fe1–O3 and O5–Fe1–O7 which are, respectively 150.46 (5)° and 151.47 (5)°. Although the O1–Fe1–O3 and O5–Fe1–O7 planes are close to being orthogonal (dihedral angle = 88.49 (7)°), the remainder of the ligands are noticeably less so. In particular, the ligand containing N1 is folded along the O1···O3 line by 30.4 (1)° which is likely caused by a close contact with the carbonyl group containing O8 in the anion at 1 + x, y, z. This distortion is the largest of all those found in the related complexes [Cat][Fe(py-2,6-dc)2] (Cat = (H5O2) (Hseu et al., 1991, Marsh et al., 1993), 2,9-dimethyl-1,10-phenanthrolinium (Aghabozorg, Sadrkhanlou et al., 2007), piperazinium (Aghabozorg, Nemati et al., 2007), 4,4'-bipyridinium (Soleimannejad et al., 2010), 2-aminopyrimidinium (Eshtiagh-Hosseini et al., 2011)).

The solid state architecture of I is generated via intermolecular N–H···O and C–H···O hydrogen bonding (Table 1 and Fig. 2) having the graph-set motifs R44(24) and R21(6) as well as offset π-π stacking interactions between the pyridine unit containing N2 and the cation at 1 - x, -y, 1 - z (centroid-centroid distance = 3.805 (13) Å) and a C14═O8···π interaction with the centroid of the pyridine ring containing N1 (3.494 (14) Å).

Experimental

A solution of 2-aminopyridine (0.06 g, 0.60 mmol) and pyridine-2,6-dicarboxylic acid (0.05 g, 0.30 mmol) was refluxed for 1 h. Then a solution of FeCl3.6H2O (0.04 g, 0.15 mmol) was added dropwise and the refluxing continued for 6 hrs at 60°C. The resulting solution was light green in colour. After slow evaporation of solvent at laboratory temperature plate-like yellow crystals were collected.

Refinement

The N-bound H atoms were located in a difference Fourier map and refined freely. The C-bound H-atoms were placed in calculated positions and treated as riding atoms, with C–H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Perspective view of I with 50% probability ellipsoids for the non-H atoms.

Fig. 2.

Fig. 2.

Packing of I viewed down a with H-bonding interactions shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level. H atoms not involved in hydrogen bonding are omitted. Key: Fe = brown, O = red, N = blue, C = grey, H = green.

Crystal data

(C5H7N2)[Fe(C7H3NO4)2] F(000) = 1960
Mr = 481.18 Dx = 1.688 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 9998 reflections
a = 7.9288 (10) Å θ = 2.7–29.0°
b = 15.881 (2) Å µ = 0.86 mm1
c = 30.069 (4) Å T = 100 K
V = 3786.2 (8) Å3 Plate, yellow
Z = 8 0.34 × 0.25 × 0.08 mm

Data collection

Bruker SMART APEX CCD diffractometer 5007 independent reflections
Radiation source: fine-focus sealed tube 4354 reflections with I > 2σ(I)
graphite Rint = 0.051
φ and ω scans θmax = 29.1°, θmin = 2.6°
Absorption correction: numerical (SADABS; Sheldrick, 2009) h = −10→10
Tmin = 0.696, Tmax = 0.932 k = −21→21
62788 measured reflections l = −40→40

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0387P)2 + 2.8224P] where P = (Fo2 + 2Fc2)/3
5007 reflections (Δ/σ)max = 0.002
301 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 °. in omega, colllected at phi = 0.00, 90.00 and 180.00 °. and 2 sets of 800 frames, each of width 0.45 ° in phi, collected at omega = -30.00 and 210.00 °. The scan time was 10 sec/frame.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. Those attached to nitrogen were independently refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.59560 (3) 0.000219 (13) 0.381592 (7) 0.01464 (7)
O1 0.71089 (13) 0.10747 (7) 0.40025 (3) 0.0189 (2)
O2 0.86897 (14) 0.21717 (7) 0.37918 (4) 0.0207 (2)
O3 0.57386 (14) −0.09825 (7) 0.33979 (4) 0.0193 (2)
O4 0.58951 (16) −0.14205 (7) 0.26911 (4) 0.0260 (3)
O5 0.72260 (13) −0.06573 (7) 0.42789 (4) 0.0200 (2)
O6 0.71032 (17) −0.14212 (9) 0.49034 (4) 0.0340 (3)
O7 0.38240 (14) 0.05590 (7) 0.35875 (4) 0.0203 (2)
O8 0.09948 (14) 0.06009 (8) 0.36268 (4) 0.0282 (3)
N1 0.71877 (15) 0.03920 (8) 0.32474 (4) 0.0151 (2)
N2 0.41237 (15) −0.03392 (8) 0.42709 (4) 0.0155 (2)
C1 0.79204 (18) 0.15161 (9) 0.37119 (5) 0.0169 (3)
C2 0.78632 (17) 0.11562 (9) 0.32459 (5) 0.0152 (3)
C3 0.83948 (19) 0.15243 (10) 0.28506 (5) 0.0182 (3)
H3 0.8871 0.2073 0.2846 0.022*
C4 0.8203 (2) 0.10578 (10) 0.24610 (5) 0.0207 (3)
H4 0.8547 0.1293 0.2185 0.025*
C5 0.7509 (2) 0.02482 (9) 0.24716 (5) 0.0196 (3)
H5 0.7388 −0.0075 0.2208 0.024*
C6 0.70041 (18) −0.00665 (9) 0.28810 (5) 0.0165 (3)
C7 0.61493 (19) −0.09005 (9) 0.29832 (5) 0.0182 (3)
C8 0.6451 (2) −0.09916 (10) 0.46131 (5) 0.0205 (3)
C9 0.4578 (2) −0.08052 (10) 0.46189 (5) 0.0182 (3)
C10 0.3381 (2) −0.10642 (11) 0.49278 (5) 0.0242 (3)
H10 0.3692 −0.1383 0.5182 0.029*
C11 0.1704 (2) −0.08385 (11) 0.48508 (6) 0.0278 (4)
H11 0.0858 −0.1009 0.5056 0.033*
C12 0.1253 (2) −0.03686 (11) 0.44795 (6) 0.0244 (3)
H12 0.0109 −0.0224 0.4423 0.029*
C13 0.25309 (19) −0.01181 (10) 0.41939 (5) 0.0178 (3)
C14 0.23732 (19) 0.03925 (10) 0.37688 (5) 0.0192 (3)
N3 0.69376 (17) 0.22722 (8) 0.63929 (4) 0.0190 (3)
H3A 0.589 (3) 0.2371 (14) 0.6420 (7) 0.030 (6)*
N4 0.6725 (2) 0.28438 (10) 0.56932 (5) 0.0301 (3)
H4A 0.561 (3) 0.2940 (15) 0.5747 (8) 0.043 (7)*
H4B 0.712 (3) 0.3010 (15) 0.5452 (8) 0.039 (6)*
C15 0.7672 (2) 0.24858 (9) 0.60028 (5) 0.0212 (3)
C16 0.9402 (2) 0.22941 (10) 0.59494 (6) 0.0276 (4)
H16 0.9963 0.2433 0.5680 0.033*
C17 1.0264 (2) 0.19094 (11) 0.62851 (7) 0.0288 (4)
H17 1.1421 0.1772 0.6246 0.035*
C18 0.9461 (2) 0.17143 (11) 0.66875 (6) 0.0264 (3)
H18 1.0067 0.1456 0.6924 0.032*
C19 0.7792 (2) 0.19028 (10) 0.67326 (5) 0.0218 (3)
H19 0.7225 0.1775 0.7003 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.01050 (11) 0.01760 (12) 0.01583 (12) 0.00026 (7) 0.00200 (7) 0.00414 (7)
O1 0.0182 (5) 0.0206 (5) 0.0178 (5) −0.0026 (4) 0.0036 (4) 0.0010 (4)
O2 0.0186 (5) 0.0173 (5) 0.0261 (6) −0.0019 (4) 0.0028 (4) −0.0004 (4)
O3 0.0194 (5) 0.0171 (5) 0.0214 (5) −0.0013 (4) 0.0020 (4) 0.0041 (4)
O4 0.0326 (7) 0.0191 (6) 0.0264 (6) −0.0023 (5) 0.0022 (5) −0.0028 (4)
O5 0.0121 (5) 0.0254 (6) 0.0225 (5) 0.0011 (4) −0.0011 (4) 0.0070 (4)
O6 0.0318 (7) 0.0410 (7) 0.0292 (6) 0.0014 (6) −0.0093 (5) 0.0163 (6)
O7 0.0160 (5) 0.0248 (6) 0.0199 (5) 0.0043 (4) 0.0001 (4) 0.0054 (4)
O8 0.0168 (6) 0.0336 (7) 0.0342 (7) 0.0092 (5) −0.0079 (5) −0.0039 (5)
N1 0.0108 (5) 0.0165 (6) 0.0180 (6) 0.0019 (5) 0.0024 (4) 0.0023 (4)
N2 0.0119 (6) 0.0195 (6) 0.0152 (6) −0.0014 (5) 0.0005 (4) 0.0000 (5)
C1 0.0122 (6) 0.0178 (7) 0.0206 (7) 0.0029 (5) 0.0022 (5) 0.0023 (5)
C2 0.0105 (6) 0.0165 (7) 0.0186 (7) 0.0017 (5) 0.0021 (5) 0.0022 (5)
C3 0.0146 (7) 0.0178 (7) 0.0222 (7) 0.0007 (5) 0.0026 (5) 0.0047 (5)
C4 0.0207 (7) 0.0234 (7) 0.0179 (7) 0.0017 (6) 0.0056 (6) 0.0051 (6)
C5 0.0208 (7) 0.0196 (7) 0.0184 (7) 0.0029 (6) 0.0034 (6) 0.0008 (6)
C6 0.0131 (6) 0.0165 (7) 0.0199 (7) 0.0026 (5) 0.0016 (5) 0.0015 (5)
C7 0.0152 (7) 0.0161 (7) 0.0234 (7) 0.0022 (5) 0.0014 (6) 0.0025 (5)
C8 0.0190 (7) 0.0228 (7) 0.0198 (7) −0.0016 (6) −0.0036 (6) 0.0044 (6)
C9 0.0189 (7) 0.0203 (7) 0.0153 (7) −0.0038 (6) 0.0004 (5) 0.0008 (5)
C10 0.0296 (9) 0.0250 (8) 0.0180 (7) −0.0064 (7) 0.0055 (6) 0.0020 (6)
C11 0.0241 (8) 0.0305 (9) 0.0289 (8) −0.0085 (7) 0.0144 (7) −0.0030 (7)
C12 0.0137 (7) 0.0286 (8) 0.0310 (8) −0.0035 (6) 0.0064 (6) −0.0081 (7)
C13 0.0116 (6) 0.0204 (7) 0.0215 (7) −0.0006 (5) 0.0006 (5) −0.0049 (5)
C14 0.0151 (7) 0.0208 (7) 0.0218 (7) 0.0030 (6) −0.0020 (5) −0.0044 (6)
N3 0.0149 (6) 0.0207 (6) 0.0214 (6) 0.0011 (5) 0.0045 (5) 0.0024 (5)
N4 0.0420 (10) 0.0285 (8) 0.0197 (7) 0.0062 (7) 0.0093 (6) 0.0062 (6)
C15 0.0270 (8) 0.0136 (7) 0.0228 (8) −0.0013 (6) 0.0083 (6) 0.0000 (5)
C16 0.0289 (9) 0.0194 (8) 0.0344 (9) −0.0062 (7) 0.0188 (7) −0.0033 (6)
C17 0.0164 (8) 0.0205 (8) 0.0494 (11) −0.0024 (6) 0.0084 (7) −0.0074 (7)
C18 0.0189 (8) 0.0239 (8) 0.0365 (9) 0.0012 (6) −0.0024 (7) −0.0004 (7)
C19 0.0182 (7) 0.0233 (8) 0.0239 (8) −0.0004 (6) 0.0007 (6) 0.0028 (6)

Geometric parameters (Å, °)

Fe1—O5 2.0122 (11) C5—H5 0.9500
Fe1—O1 2.0128 (11) C6—C7 1.519 (2)
Fe1—O3 2.0137 (11) C8—C9 1.514 (2)
Fe1—O7 2.0277 (11) C9—C10 1.390 (2)
Fe1—N1 2.0638 (12) C10—C11 1.396 (3)
Fe1—N2 2.0679 (12) C10—H10 0.9500
O1—C1 1.2919 (18) C11—C12 1.390 (3)
O2—C1 1.2305 (19) C11—H11 0.9500
O3—C7 1.2954 (19) C12—C13 1.387 (2)
O4—C7 1.2221 (19) C12—H12 0.9500
O5—C8 1.2920 (19) C13—C14 1.519 (2)
O6—C8 1.2227 (19) N3—C15 1.353 (2)
O7—C14 1.3002 (19) N3—C19 1.359 (2)
O8—C14 1.2192 (19) N3—H3A 0.85 (2)
N1—C2 1.3266 (19) N4—C15 1.324 (2)
N1—C6 1.3287 (19) N4—H4A 0.91 (3)
N2—C13 1.3311 (19) N4—H4B 0.83 (2)
N2—C9 1.3316 (19) C15—C16 1.414 (2)
C1—C2 1.514 (2) C16—C17 1.364 (3)
C2—C3 1.390 (2) C16—H16 0.9500
C3—C4 1.395 (2) C17—C18 1.402 (3)
C3—H3 0.9500 C17—H17 0.9500
C4—C5 1.399 (2) C18—C19 1.363 (2)
C4—H4 0.9500 C18—H18 0.9500
C5—C6 1.388 (2) C19—H19 0.9500
O5—Fe1—O1 91.17 (5) O4—C7—C6 121.15 (14)
O5—Fe1—O3 94.04 (5) O3—C7—C6 113.23 (13)
O1—Fe1—O3 150.46 (4) O6—C8—O5 125.69 (15)
O5—Fe1—O7 151.47 (4) O6—C8—C9 121.04 (15)
O1—Fe1—O7 95.97 (5) O5—C8—C9 113.27 (13)
O3—Fe1—O7 93.20 (5) N2—C9—C10 120.29 (15)
O5—Fe1—N1 119.50 (5) N2—C9—C8 111.41 (13)
O1—Fe1—N1 76.24 (5) C10—C9—C8 128.29 (15)
O3—Fe1—N1 75.90 (5) C9—C10—C11 117.61 (15)
O7—Fe1—N1 89.03 (5) C9—C10—H10 121.2
O5—Fe1—N2 75.96 (5) C11—C10—H10 121.2
O1—Fe1—N2 110.89 (5) C12—C11—C10 121.09 (15)
O3—Fe1—N2 98.58 (5) C12—C11—H11 119.5
O7—Fe1—N2 75.68 (5) C10—C11—H11 119.5
N1—Fe1—N2 163.55 (5) C13—C12—C11 117.59 (15)
C1—O1—Fe1 119.79 (10) C13—C12—H12 121.2
C7—O3—Fe1 120.09 (10) C11—C12—H12 121.2
C8—O5—Fe1 120.93 (10) N2—C13—C12 120.67 (15)
C14—O7—Fe1 120.45 (10) N2—C13—C14 111.43 (13)
C2—N1—C6 122.87 (13) C12—C13—C14 127.89 (15)
C2—N1—Fe1 117.92 (10) O8—C14—O7 126.22 (15)
C6—N1—Fe1 118.08 (10) O8—C14—C13 120.90 (15)
C13—N2—C9 122.70 (13) O7—C14—C13 112.88 (13)
C13—N2—Fe1 118.84 (10) C15—N3—C19 123.04 (14)
C9—N2—Fe1 118.39 (10) C15—N3—H3A 117.3 (15)
O2—C1—O1 125.02 (14) C19—N3—H3A 119.6 (15)
O2—C1—C2 121.01 (13) C15—N4—H4A 119.9 (15)
O1—C1—C2 113.98 (13) C15—N4—H4B 122.3 (16)
N1—C2—C3 120.67 (14) H4A—N4—H4B 118 (2)
N1—C2—C1 110.75 (12) N4—C15—N3 118.23 (15)
C3—C2—C1 128.58 (14) N4—C15—C16 124.22 (16)
C2—C3—C4 117.51 (14) N3—C15—C16 117.53 (16)
C2—C3—H3 121.2 C17—C16—C15 119.88 (15)
C4—C3—H3 121.2 C17—C16—H16 120.1
C3—C4—C5 120.81 (14) C15—C16—H16 120.1
C3—C4—H4 119.6 C16—C17—C18 120.70 (16)
C5—C4—H4 119.6 C16—C17—H17 119.7
C6—C5—C4 117.69 (14) C18—C17—H17 119.7
C6—C5—H5 121.2 C19—C18—C17 118.55 (17)
C4—C5—H5 121.2 C19—C18—H18 120.7
N1—C6—C5 120.44 (13) C17—C18—H18 120.7
N1—C6—C7 111.03 (13) N3—C19—C18 120.28 (15)
C5—C6—C7 128.48 (14) N3—C19—H19 119.9
O4—C7—O3 125.61 (14) C18—C19—H19 119.9
O5—Fe1—O1—C1 124.47 (11) N1—C2—C3—C4 −0.5 (2)
O3—Fe1—O1—C1 24.16 (16) C1—C2—C3—C4 −179.94 (14)
O7—Fe1—O1—C1 −83.20 (11) C2—C3—C4—C5 −0.4 (2)
N1—Fe1—O1—C1 4.33 (11) C3—C4—C5—C6 0.8 (2)
N2—Fe1—O1—C1 −160.13 (10) C2—N1—C6—C5 −0.7 (2)
O5—Fe1—O3—C7 −130.21 (11) Fe1—N1—C6—C5 166.92 (11)
O1—Fe1—O3—C7 −30.65 (16) C2—N1—C6—C7 −178.35 (12)
O7—Fe1—O3—C7 77.40 (11) Fe1—N1—C6—C7 −10.74 (15)
N1—Fe1—O3—C7 −10.79 (11) C4—C5—C6—N1 −0.3 (2)
N2—Fe1—O3—C7 153.40 (11) C4—C5—C6—C7 176.96 (14)
O1—Fe1—O5—C8 113.09 (12) Fe1—O3—C7—O4 −171.34 (12)
O3—Fe1—O5—C8 −96.00 (12) Fe1—O3—C7—C6 8.32 (16)
O7—Fe1—O5—C8 8.31 (18) N1—C6—C7—O4 −178.53 (14)
N1—Fe1—O5—C8 −172.08 (11) C5—C6—C7—O4 4.0 (2)
N2—Fe1—O5—C8 1.84 (12) N1—C6—C7—O3 1.79 (18)
O5—Fe1—O7—C14 −14.53 (18) C5—C6—C7—O3 −175.64 (15)
O1—Fe1—O7—C14 −118.14 (11) Fe1—O5—C8—O6 177.84 (14)
O3—Fe1—O7—C14 89.99 (12) Fe1—O5—C8—C9 −1.99 (18)
N1—Fe1—O7—C14 165.81 (12) C13—N2—C9—C10 −1.8 (2)
N2—Fe1—O7—C14 −8.06 (11) Fe1—N2—C9—C10 −178.61 (12)
O5—Fe1—N1—C2 −93.42 (11) C13—N2—C9—C8 177.56 (14)
O1—Fe1—N1—C2 −9.99 (10) Fe1—N2—C9—C8 0.72 (17)
O3—Fe1—N1—C2 179.94 (11) O6—C8—C9—N2 −179.09 (15)
O7—Fe1—N1—C2 86.39 (11) O5—C8—C9—N2 0.76 (19)
N2—Fe1—N1—C2 107.84 (19) O6—C8—C9—C10 0.2 (3)
O5—Fe1—N1—C6 98.35 (11) O5—C8—C9—C10 −179.99 (16)
O1—Fe1—N1—C6 −178.22 (11) N2—C9—C10—C11 1.8 (2)
O3—Fe1—N1—C6 11.71 (10) C8—C9—C10—C11 −177.39 (16)
O7—Fe1—N1—C6 −81.84 (11) C9—C10—C11—C12 −0.3 (3)
N2—Fe1—N1—C6 −60.4 (2) C10—C11—C12—C13 −1.3 (3)
O5—Fe1—N2—C13 −178.28 (12) C9—N2—C13—C12 0.1 (2)
O1—Fe1—N2—C13 95.90 (12) Fe1—N2—C13—C12 176.91 (12)
O3—Fe1—N2—C13 −86.23 (12) C9—N2—C13—C14 −178.55 (13)
O7—Fe1—N2—C13 4.90 (11) Fe1—N2—C13—C14 −1.72 (17)
N1—Fe1—N2—C13 −17.3 (3) C11—C12—C13—N2 1.4 (2)
O5—Fe1—N2—C9 −1.31 (11) C11—C12—C13—C14 179.82 (15)
O1—Fe1—N2—C9 −87.13 (12) Fe1—O7—C14—O8 −170.02 (13)
O3—Fe1—N2—C9 90.74 (12) Fe1—O7—C14—C13 9.43 (17)
O7—Fe1—N2—C9 −178.13 (12) N2—C13—C14—O8 174.77 (15)
N1—Fe1—N2—C9 159.71 (16) C12—C13—C14—O8 −3.7 (3)
Fe1—O1—C1—O2 −178.75 (12) N2—C13—C14—O7 −4.71 (18)
Fe1—O1—C1—C2 1.11 (16) C12—C13—C14—O7 176.78 (15)
C6—N1—C2—C3 1.1 (2) C19—N3—C15—N4 −179.95 (15)
Fe1—N1—C2—C3 −166.53 (11) C19—N3—C15—C16 1.4 (2)
C6—N1—C2—C1 −179.40 (13) N4—C15—C16—C17 −178.71 (16)
Fe1—N1—C2—C1 12.98 (15) N3—C15—C16—C17 −0.1 (2)
O2—C1—C2—N1 170.78 (13) C15—C16—C17—C18 −1.2 (3)
O1—C1—C2—N1 −9.09 (17) C16—C17—C18—C19 1.2 (3)
O2—C1—C2—C3 −9.8 (2) C15—N3—C19—C18 −1.3 (2)
O1—C1—C2—C3 170.37 (14) C17—C18—C19—N3 0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O2i 0.85 (2) 1.99 (2) 2.7786 (18) 153 (2)
N4—H4A···O2i 0.91 (3) 2.07 (3) 2.862 (2) 145 (2)
N4—H4B···O6ii 0.83 (2) 1.98 (2) 2.8045 (19) 171 (2)
C3—H3···O4ii 0.95 2.44 3.3466 (19) 159
C12—H12···O5iii 0.95 2.43 3.281 (2) 150
C10—H10···O1iv 0.95 2.58 3.2398 (19) 127

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+3/2, y+1/2, z; (iii) x−1, y, z; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2696).

References

  1. Aghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2007). Acta Cryst. E63, m2921. [DOI] [PMC free article] [PubMed]
  2. Aghabozorg, H., Sadrkhanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1760.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2009). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2010). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Eshtiagh-Hosseini, H., Mirzaei, M., Yousefi, Z., Puschmann, H., Shokrollahi, A. & Aghaei, R. (2011). J. Coord. Chem. 64, 3969–3979.
  7. Eshtiagh-Hosseini, H., Yousefi, Z., Shafiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187–3197.
  8. Hseu, J. F., Chen, J. J., Chuang, C. C., Wei, H. H., Cheng, M. C., Wang, Y. & Yao, Y. D. (1991). Inorg. Chim. Acta, 184, 1–5.
  9. Marsh, R. E. (1993). Acta Cryst. C49, 643.
  10. Mirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580–607.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2009). SADABS University of Göttingen, Germany.
  13. Soleimannejad, J., Aghabozorg, H. & Sheshmani, S. (2010). Acta Cryst. E66, m411. [DOI] [PMC free article] [PubMed]
  14. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812001493/rz2696sup1.cif

e-68-0m174-sup1.cif (29.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001493/rz2696Isup2.hkl

e-68-0m174-Isup2.hkl (245.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES