Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 21;68(Pt 2):m182. doi: 10.1107/S160053681200195X

{4,4′,6,6′-Tetra­chloro-2,2′-[2,2-dimethyl­propane-1,3-diylbis(nitrilo­methanylyl­idene)]}copper(II)

Hadi Kargar a,*, Reza Kia b,c, Saeideh Abbasian a, Muhammad Nawaz Tahir d,*
PMCID: PMC3274908  PMID: 22346855

Abstract

In the title Schiff base complex, [Cu(C19H16Cl4N2O2)], the geometry around the CuII atom is distorted square-planar defined by the N2O2 donor atoms of the coordinated ligand. The dihedral angle between the substituted benzene rings is 29.95 (16)°. In the crystal, mol­ecules are linked along the b axis, forming individual dimers through C—H⋯O inter­actions. The crystal structure is further stabilized by inter­molecular π–π inter­actions [centroid–centroid distance = 3.6131 (17) Å].

Related literature

For standard values of bond lengths, see: Allen et al. (1987). For applications of Schiff bases in coordination chemistry, see, for example: Granovski et al. (1993); Blower (1998). For related structures see, for example: Ghaemi et al. (2011); Kargar et al. (2011, 2012).graphic file with name e-68-0m182-scheme1.jpg

Experimental

Crystal data

  • [Cu(C19H16Cl4N2O2)]

  • M r = 509.68

  • Monoclinic, Inline graphic

  • a = 12.4002 (10) Å

  • b = 8.4570 (7) Å

  • c = 20.0316 (19) Å

  • β = 97.278 (4)°

  • V = 2083.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 291 K

  • 0.25 × 0.18 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.694, T max = 0.871

  • 18291 measured reflections

  • 4988 independent reflections

  • 2882 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.105

  • S = 1.00

  • 4988 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200195X/hp2025sup1.cif

e-68-0m182-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200195X/hp2025Isup2.hkl

e-68-0m182-Isup2.hkl (244.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.56 3.331 (4) 136

Symmetry code: (i) Inline graphic.

Acknowledgments

HK and SA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan for the research facilities.

supplementary crystallographic information

Comment

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998). In continuation of our work on the crystal structure of Schiff base metal complexes (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011), we determined the X-ray structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011).

The geometry around CuII is a distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the substituted benzene rings is 29.95 (16)°. In the crystal structure the molecules are linked together along the b-axis, forming individual dimers through the intermolecular C—H···O interactions (Table 1, Fig. 2). The crystal structure is further stabilized by the intermolecular π-π interaction [Cg1···Cg1ii = 3.6131 (17)Å; (ii) 1 - X, 1- Y,-Z; Cg1 is the centroid of Cu(1)/O(2)/C(19)/C(14)/C(13)/N(2) ring].

Experimental

The title compound was synthesized by adding 3,5-dichloro-salicylaldehyde-2,2-dimethyl-1, 3-propanediamine (2 mmol) to a solution of CuCl2. 4H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Dark-green single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement

The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.

Fig. 2.

Fig. 2.

A part of the packing diagram of the title compound showing individual dimer formation through the intermolecular C—H···O intearctions (dashed lines). Only the H atoms involved in the interactions are shown.

Crystal data

[Cu(C19H16Cl4N2O2)] F(000) = 1028
Mr = 509.68 Dx = 1.625 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2540 reflections
a = 12.4002 (10) Å θ = 2.5–27.4°
b = 8.4570 (7) Å µ = 1.58 mm1
c = 20.0316 (19) Å T = 291 K
β = 97.278 (4)° Block, dark-green
V = 2083.8 (3) Å3 0.25 × 0.18 × 0.09 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4988 independent reflections
Radiation source: fine-focus sealed tube 2882 reflections with I > 2σ(I)
graphite Rint = 0.060
φ and ω scans θmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −16→14
Tmin = 0.694, Tmax = 0.871 k = −9→11
18291 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0376P)2] where P = (Fo2 + 2Fc2)/3
4988 reflections (Δ/σ)max < 0.001
255 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5462 (3) 0.8875 (4) 0.14363 (17) 0.0370 (8)
C2 0.6238 (3) 0.9020 (4) 0.20186 (18) 0.0428 (9)
C3 0.6049 (3) 0.9834 (4) 0.25795 (18) 0.0468 (9)
H3 0.6577 0.9874 0.2953 0.056*
C4 0.5058 (3) 1.0605 (4) 0.25883 (18) 0.0486 (9)
C5 0.4286 (3) 1.0532 (4) 0.20422 (18) 0.0430 (9)
H5 0.3629 1.1057 0.2051 0.052*
C6 0.4466 (3) 0.9681 (4) 0.14670 (17) 0.0365 (8)
C7 0.3634 (3) 0.9733 (4) 0.08983 (17) 0.0398 (8)
H7 0.3024 1.0343 0.0944 0.048*
C8 0.2764 (3) 0.9331 (4) −0.02093 (17) 0.0442 (9)
H8A 0.3077 0.9657 −0.0607 0.053*
H8B 0.2327 1.0201 −0.0078 0.053*
C9 0.2022 (3) 0.7905 (4) −0.03888 (18) 0.0414 (8)
C10 0.1184 (3) 0.7758 (5) 0.0105 (2) 0.0725 (13)
H10A 0.1548 0.7761 0.0557 0.109*
H10B 0.0788 0.6788 0.0022 0.109*
H10C 0.0689 0.8634 0.0045 0.109*
C11 0.1447 (3) 0.8178 (5) −0.1105 (2) 0.0722 (13)
H11A 0.0918 0.7361 −0.1217 0.108*
H11B 0.1973 0.8156 −0.1418 0.108*
H11C 0.1091 0.9188 −0.1127 0.108*
C12 0.2678 (2) 0.6363 (4) −0.03537 (18) 0.0436 (9)
H12A 0.2730 0.5953 0.0101 0.052*
H12B 0.2283 0.5593 −0.0649 0.052*
C13 0.4035 (3) 0.5747 (4) −0.10521 (18) 0.0411 (9)
H13 0.3483 0.5186 −0.1305 0.049*
C14 0.5102 (3) 0.5676 (4) −0.12688 (18) 0.0394 (8)
C15 0.5173 (3) 0.4938 (4) −0.18871 (19) 0.0490 (10)
H15 0.4548 0.4545 −0.2138 0.059*
C16 0.6153 (3) 0.4793 (4) −0.21236 (18) 0.0505 (10)
C17 0.7093 (3) 0.5351 (4) −0.17506 (18) 0.0464 (9)
H17 0.7761 0.5236 −0.1910 0.056*
C18 0.7030 (2) 0.6076 (4) −0.11442 (17) 0.0374 (8)
C19 0.6035 (2) 0.6294 (4) −0.08710 (17) 0.0354 (8)
Cl1 0.74867 (8) 0.80938 (13) 0.20120 (6) 0.0735 (4)
Cl2 0.48425 (9) 1.16671 (15) 0.33020 (6) 0.0774 (4)
Cl3 0.62354 (9) 0.38486 (16) −0.28877 (6) 0.0822 (4)
Cl4 0.82198 (6) 0.67591 (10) −0.06837 (5) 0.0476 (2)
Cu1 0.48016 (3) 0.76529 (5) 0.01057 (2) 0.03872 (14)
N1 0.3649 (2) 0.9025 (3) 0.03362 (14) 0.0384 (7)
N2 0.37799 (19) 0.6517 (3) −0.05406 (14) 0.0374 (7)
O1 0.57082 (17) 0.8082 (3) 0.09215 (12) 0.0448 (6)
O2 0.60372 (17) 0.6982 (3) −0.02938 (12) 0.0431 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0357 (19) 0.035 (2) 0.040 (2) −0.0035 (15) 0.0030 (16) 0.0027 (16)
C2 0.0335 (19) 0.038 (2) 0.055 (2) 0.0000 (15) −0.0015 (17) 0.0029 (18)
C3 0.048 (2) 0.045 (2) 0.045 (2) −0.0118 (17) −0.0026 (18) 0.0024 (18)
C4 0.050 (2) 0.054 (2) 0.042 (2) −0.0112 (19) 0.0095 (19) −0.0025 (18)
C5 0.040 (2) 0.045 (2) 0.045 (2) 0.0019 (17) 0.0106 (18) 0.0005 (18)
C6 0.0335 (19) 0.036 (2) 0.040 (2) −0.0006 (15) 0.0041 (16) 0.0032 (16)
C7 0.0345 (19) 0.037 (2) 0.049 (2) 0.0021 (15) 0.0108 (17) 0.0023 (17)
C8 0.046 (2) 0.045 (2) 0.040 (2) 0.0141 (17) −0.0017 (17) 0.0079 (17)
C9 0.0311 (18) 0.047 (2) 0.046 (2) 0.0060 (15) 0.0005 (16) 0.0039 (17)
C10 0.044 (2) 0.084 (3) 0.094 (4) 0.007 (2) 0.028 (2) −0.004 (3)
C11 0.070 (3) 0.067 (3) 0.070 (3) 0.010 (2) −0.027 (2) −0.001 (2)
C12 0.0301 (18) 0.046 (2) 0.055 (2) −0.0014 (16) 0.0085 (17) 0.0046 (18)
C13 0.0324 (19) 0.036 (2) 0.053 (2) −0.0017 (15) −0.0012 (17) 0.0003 (17)
C14 0.0326 (19) 0.036 (2) 0.049 (2) 0.0016 (15) 0.0036 (17) −0.0009 (17)
C15 0.040 (2) 0.051 (2) 0.055 (3) −0.0033 (17) 0.0005 (19) −0.0141 (19)
C16 0.044 (2) 0.057 (2) 0.052 (3) −0.0002 (18) 0.0116 (19) −0.018 (2)
C17 0.039 (2) 0.048 (2) 0.056 (2) 0.0011 (17) 0.0177 (19) −0.0066 (19)
C18 0.0329 (18) 0.0348 (19) 0.045 (2) −0.0006 (14) 0.0066 (16) 0.0010 (16)
C19 0.0337 (19) 0.0294 (18) 0.043 (2) 0.0025 (14) 0.0034 (16) 0.0011 (16)
Cl1 0.0471 (6) 0.0767 (8) 0.0895 (9) 0.0202 (5) −0.0185 (6) −0.0163 (6)
Cl2 0.0730 (8) 0.1044 (9) 0.0569 (7) −0.0119 (7) 0.0172 (6) −0.0287 (6)
Cl3 0.0600 (7) 0.1171 (10) 0.0709 (8) −0.0016 (6) 0.0130 (6) −0.0493 (7)
Cl4 0.0320 (5) 0.0540 (6) 0.0568 (6) −0.0024 (4) 0.0058 (4) −0.0025 (5)
Cu1 0.0315 (2) 0.0416 (3) 0.0435 (3) 0.00221 (18) 0.00652 (19) −0.0001 (2)
N1 0.0312 (15) 0.0406 (17) 0.0418 (18) 0.0036 (12) −0.0011 (13) 0.0022 (14)
N2 0.0293 (15) 0.0356 (16) 0.0481 (18) −0.0012 (12) 0.0086 (13) 0.0008 (14)
O1 0.0317 (13) 0.0533 (15) 0.0483 (16) 0.0058 (11) 0.0006 (11) −0.0046 (12)
O2 0.0321 (13) 0.0509 (15) 0.0469 (15) −0.0002 (10) 0.0073 (11) −0.0083 (12)

Geometric parameters (Å, °)

C1—O1 1.299 (4) C11—H11A 0.9600
C1—C6 1.418 (4) C11—H11B 0.9600
C1—C2 1.420 (4) C11—H11C 0.9600
C2—C3 1.362 (5) C12—N2 1.467 (4)
C2—Cl1 1.737 (3) C12—H12A 0.9700
C3—C4 1.394 (5) C12—H12B 0.9700
C3—H3 0.9300 C13—N2 1.287 (4)
C4—C5 1.360 (5) C13—C14 1.444 (4)
C4—Cl2 1.737 (4) C13—H13 0.9300
C5—C6 1.400 (4) C14—C15 1.399 (5)
C5—H5 0.9300 C14—C19 1.419 (4)
C6—C7 1.437 (4) C15—C16 1.365 (4)
C7—N1 1.278 (4) C15—H15 0.9300
C7—H7 0.9300 C16—C17 1.385 (5)
C8—N1 1.470 (4) C16—Cl3 1.741 (3)
C8—C9 1.532 (4) C17—C18 1.372 (4)
C8—H8A 0.9700 C17—H17 0.9300
C8—H8B 0.9700 C18—C19 1.424 (4)
C9—C10 1.528 (5) C18—Cl4 1.737 (3)
C9—C12 1.534 (4) C19—O2 1.294 (4)
C9—C11 1.537 (5) Cu1—O1 1.898 (2)
C10—H10A 0.9600 Cu1—O2 1.903 (2)
C10—H10B 0.9600 Cu1—N1 1.942 (3)
C10—H10C 0.9600 Cu1—N2 1.947 (3)
O1—C1—C6 125.2 (3) H11A—C11—H11C 109.5
O1—C1—C2 119.6 (3) H11B—C11—H11C 109.5
C6—C1—C2 115.2 (3) N2—C12—C9 114.7 (3)
C3—C2—C1 123.5 (3) N2—C12—H12A 108.6
C3—C2—Cl1 118.7 (3) C9—C12—H12A 108.6
C1—C2—Cl1 117.8 (3) N2—C12—H12B 108.6
C2—C3—C4 119.3 (3) C9—C12—H12B 108.6
C2—C3—H3 120.3 H12A—C12—H12B 107.6
C4—C3—H3 120.3 N2—C13—C14 126.0 (3)
C5—C4—C3 120.0 (3) N2—C13—H13 117.0
C5—C4—Cl2 121.3 (3) C14—C13—H13 117.0
C3—C4—Cl2 118.7 (3) C15—C14—C19 121.5 (3)
C4—C5—C6 121.1 (3) C15—C14—C13 116.6 (3)
C4—C5—H5 119.5 C19—C14—C13 121.9 (3)
C6—C5—H5 119.5 C16—C15—C14 120.4 (3)
C5—C6—C1 120.8 (3) C16—C15—H15 119.8
C5—C6—C7 117.6 (3) C14—C15—H15 119.8
C1—C6—C7 121.5 (3) C15—C16—C17 120.5 (3)
N1—C7—C6 126.5 (3) C15—C16—Cl3 120.0 (3)
N1—C7—H7 116.7 C17—C16—Cl3 119.5 (3)
C6—C7—H7 116.7 C18—C17—C16 119.4 (3)
N1—C8—C9 113.9 (3) C18—C17—H17 120.3
N1—C8—H8A 108.8 C16—C17—H17 120.3
C9—C8—H8A 108.8 C17—C18—C19 123.2 (3)
N1—C8—H8B 108.8 C17—C18—Cl4 118.6 (2)
C9—C8—H8B 108.8 C19—C18—Cl4 118.2 (3)
H8A—C8—H8B 107.7 O2—C19—C14 125.2 (3)
C10—C9—C8 110.5 (3) O2—C19—C18 119.9 (3)
C10—C9—C12 107.6 (3) C14—C19—C18 114.9 (3)
C8—C9—C12 111.1 (3) O1—Cu1—O2 89.91 (10)
C10—C9—C11 110.1 (3) O1—Cu1—N1 93.14 (11)
C8—C9—C11 107.1 (3) O2—Cu1—N1 159.14 (11)
C12—C9—C11 110.6 (3) O1—Cu1—N2 158.73 (10)
C9—C10—H10A 109.5 O2—Cu1—N2 93.67 (10)
C9—C10—H10B 109.5 N1—Cu1—N2 90.94 (11)
H10A—C10—H10B 109.5 C7—N1—C8 118.7 (3)
C9—C10—H10C 109.5 C7—N1—Cu1 125.7 (2)
H10A—C10—H10C 109.5 C8—N1—Cu1 115.6 (2)
H10B—C10—H10C 109.5 C13—N2—C12 119.3 (3)
C9—C11—H11A 109.5 C13—N2—Cu1 125.0 (2)
C9—C11—H11B 109.5 C12—N2—Cu1 115.0 (2)
H11A—C11—H11B 109.5 C1—O1—Cu1 127.5 (2)
C9—C11—H11C 109.5 C19—O2—Cu1 126.8 (2)
O1—C1—C2—C3 179.8 (3) C15—C14—C19—C18 −1.1 (5)
C6—C1—C2—C3 1.6 (5) C13—C14—C19—C18 177.7 (3)
O1—C1—C2—Cl1 −0.7 (4) C17—C18—C19—O2 179.7 (3)
C6—C1—C2—Cl1 −178.9 (2) Cl4—C18—C19—O2 −0.1 (4)
C1—C2—C3—C4 −1.5 (5) C17—C18—C19—C14 1.1 (5)
Cl1—C2—C3—C4 179.0 (3) Cl4—C18—C19—C14 −178.7 (2)
C2—C3—C4—C5 0.4 (5) C6—C7—N1—C8 −174.7 (3)
C2—C3—C4—Cl2 −178.8 (3) C6—C7—N1—Cu1 1.0 (5)
C3—C4—C5—C6 0.5 (5) C9—C8—N1—C7 −112.5 (3)
Cl2—C4—C5—C6 179.7 (3) C9—C8—N1—Cu1 71.4 (3)
C4—C5—C6—C1 −0.3 (5) O1—Cu1—N1—C7 −5.6 (3)
C4—C5—C6—C7 −176.7 (3) O2—Cu1—N1—C7 −103.6 (4)
O1—C1—C6—C5 −178.7 (3) N2—Cu1—N1—C7 153.5 (3)
C2—C1—C6—C5 −0.6 (5) O1—Cu1—N1—C8 170.2 (2)
O1—C1—C6—C7 −2.5 (5) O2—Cu1—N1—C8 72.2 (4)
C2—C1—C6—C7 175.6 (3) N2—Cu1—N1—C8 −30.7 (2)
C5—C6—C7—N1 −179.3 (3) C14—C13—N2—C12 −174.9 (3)
C1—C6—C7—N1 4.3 (5) C14—C13—N2—Cu1 −4.7 (5)
N1—C8—C9—C10 81.1 (4) C9—C12—N2—C13 −118.0 (3)
N1—C8—C9—C12 −38.1 (4) C9—C12—N2—Cu1 70.9 (3)
N1—C8—C9—C11 −159.0 (3) O1—Cu1—N2—C13 −103.4 (3)
C10—C9—C12—N2 −153.9 (3) O2—Cu1—N2—C13 −4.1 (3)
C8—C9—C12—N2 −33.0 (4) N1—Cu1—N2—C13 155.5 (3)
C11—C9—C12—N2 85.8 (4) O1—Cu1—N2—C12 67.2 (4)
N2—C13—C14—C15 −172.0 (3) O2—Cu1—N2—C12 166.4 (2)
N2—C13—C14—C19 9.1 (5) N1—Cu1—N2—C12 −33.9 (2)
C19—C14—C15—C16 0.1 (5) C6—C1—O1—Cu1 −4.6 (5)
C13—C14—C15—C16 −178.7 (3) C2—C1—O1—Cu1 177.4 (2)
C14—C15—C16—C17 1.0 (6) O2—Cu1—O1—C1 166.7 (3)
C14—C15—C16—Cl3 179.1 (3) N1—Cu1—O1—C1 7.4 (3)
C15—C16—C17—C18 −1.0 (6) N2—Cu1—O1—C1 −93.3 (4)
Cl3—C16—C17—C18 −179.1 (3) C14—C19—O2—Cu1 −10.9 (5)
C16—C17—C18—C19 −0.1 (5) C18—C19—O2—Cu1 170.7 (2)
C16—C17—C18—Cl4 179.7 (3) O1—Cu1—O2—C19 170.8 (3)
C15—C14—C19—O2 −179.6 (3) N1—Cu1—O2—C19 −90.6 (4)
C13—C14—C19—O2 −0.8 (5) N2—Cu1—O2—C19 11.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O1i 0.97 2.56 3.331 (4) 136

Symmetry codes: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2025).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Blower, P. J. (1998). Transition Met. Chem., 23, 109–112.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ghaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1445–m1446. [DOI] [PMC free article] [PubMed]
  5. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
  6. Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, m941. [DOI] [PMC free article] [PubMed]
  7. Kargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012). Acta Cryst. E68, m82. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200195X/hp2025sup1.cif

e-68-0m182-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200195X/hp2025Isup2.hkl

e-68-0m182-Isup2.hkl (244.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES