Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 21;68(Pt 2):m183–m184. doi: 10.1107/S1600536811055383

Bis{N-ethyl-2-[3-(hy­droxy­imino-κN)butan-2-yl­idene]hydrazinecarbothio­amide-κ2 N 2,S}nickel(II) dichloride

Halema Shaban Abduelftah a,b, Amna Qasem Ali a,b, Naser Eltaher Eltayeb a,c,, Siang Guan Teoh a,*, Hoong-Kun Fun d,§
PMCID: PMC3274909  PMID: 22346856

Abstract

In the title complex, [Ni(C7H14N4OS)2]Cl2, the NiII ion is six-coordinated in a distorted octa­hedral geometry by four N atoms from the two imine and two oxime groups, and two S atoms from the thione groups. Two chloride ions complete the asymmetric unit. In the crystal, mol­ecules are linked through N—H⋯Cl and O—H⋯Cl hydrogen bonds into an infinite chain propagating along [101].

Related literature

For bond-length data, see: Allen et al. (1987). For a related structure, see: Choi et al. (2008). For the biological activity, pharmacological properties and analytical applications of thio­semicarbazones and their metal complexes, see: Cowley et al. (2002); Ming (2003); Lobana et al. (2004, 2007).graphic file with name e-68-0m183-scheme1.jpg

Experimental

Crystal data

  • [Ni(C7H14N4OS)2]Cl2

  • M r = 534.17

  • Monoclinic, Inline graphic

  • a = 18.4990 (11) Å

  • b = 14.2097 (9) Å

  • c = 9.2422 (6) Å

  • β = 98.542 (1)°

  • V = 2402.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 293 K

  • 0.42 × 0.20 × 0.12 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.625, T max = 0.869

  • 30693 measured reflections

  • 8190 independent reflections

  • 6071 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.089

  • S = 1.03

  • 8190 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811055383/is5020sup1.cif

e-68-0m183-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055383/is5020Isup2.hkl

e-68-0m183-Isup2.hkl (400.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—N1 2.1247 (14)
Ni1—N2 2.0120 (12)
Ni1—N5 2.1258 (13)
Ni1—N6 2.0086 (12)
Ni1—S1 2.4089 (5)
Ni1—S2 2.4126 (5)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯Cl1i 0.730 (19) 2.47 (2) 3.1689 (17) 161 (2)
O2—H1O2⋯Cl1 0.84 (3) 2.20 (3) 3.0062 (14) 161 (2)
N7—H1N7⋯Cl2ii 0.87 (2) 2.34 (2) 3.1488 (16) 153.9 (17)
N3—H1N3⋯Cl1i 0.76 (2) 2.50 (2) 3.2015 (16) 154 (2)
O1—H1O1⋯Cl2 0.79 (3) 2.20 (3) 2.9396 (16) 157 (2)
N8—H1N8⋯Cl2ii 0.85 (2) 2.349 (19) 3.1567 (19) 159 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing research leave. HAF and AQA each thank the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

supplementary crystallographic information

Comment

Thiosemicarbazones and their metal complexes have attracted significant attention because of their wide-ranging biological and pharmacological properties, analytical applications, specific structures, and chemical properties (Cowley et al., 2002; Ming, 2003; Lobana et al., 2007; Lobana et al., 2004). In this paper we report the crystal structure of bis{N-ethyl-2-[2-(hydroxyimino-κN)butan-2-ylidene]hydrazinecarbothioamide-κ2N2,S}nickle(II)dichloride.

In the mononuclear title complex (Fig. 1), [Ni(C7H14N4OS)2]Cl2, the nickel(II) ion is six-coordinated in a distorted octahedral geometry by four N atoms from two imine groups and two oxime groups and two S atoms from two thione groups. The Ni—N and Ni—S bond distances (Table 1) and the bond angles around Ni1 are in agreement with the values found for related Ni(II) complex (Choi et al., 2008). Bond lengths and angles observed in the structure are normal (Allen et al., 1987). Ni1 is a meeting-point of four five-membered rings, namely: A (Ni1/S1/N2/N3/C9), B ((Ni1/S2/N6/N7/C12), C ((Ni1/N1/N2/C1/C2) and D ((Ni1/N5/N6/C5/C6).The dihedral angles between these four rings as follows: A/B = 87.11 (5)°, A/C = 4.37 (6)°, A/D = 88.83 (6)°, B/C = 88.55 (6)°, B/D = 4.26 (6)° and C/D = 86.88 (7)°. In the crystal, molecules are linked through intermolecular N4—H1N4···Cl1, O2—H1O2···Cl1, N7—H1N7···Cl2, N3—H1N3···Cl1, O1—H1O1···Cl2 and N8—H1N8···Cl2 hydrogen bonds (Table 2) into infinite chains propagating along [101] (Fig. 2).

Experimental

The ligand was prepared by the mixing of 2,3-butanedione monoxime (1.01 g) dissolved in 20 ml of EtOH with 4-ethyl-3-thiosemicarbazide (1.19 g) dissolved in 20 ml of EtOH and a few drops of acetic acid. The mixture was boiled under reflux with stirring for 3 h. The mixture was filtered and left to cool and evaporate the solvent at room temperature and the resulting white solid formed was collected by suction filtration and washed with cold EtOH (yield 66%, m.p. 475.2 - 477.2 K). To a solution of the ligand (0.2021 g) in EtOH (20 ml) was added a solution of (NiCl2.6H2O) (0.2377 g) in EtOH (20 ml). The mixture was boiled under reflux for 2 h with stirring. The mixture was filtered and left to cool accompanied by slow evaporation of the solvent at room temperature. The brown crystals were grown in DMF-acetone (1:4) mixture by slow evaporation at room temperature for 2 weeks (yield 45%, m.p. 513.9 K).

Refinement

N- and-O bound H atoms were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 or 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene groups and 1.5Ueq(C) for methyl groups. The highest residual electron density peak is located 0.83 Å from Cl1 and the deepest hole is located 0.68 Å from Cl1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Ni(C7H14N4OS)2]Cl2 F(000) = 1112
Mr = 534.17 Dx = 1.477 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7955 reflections
a = 18.4990 (11) Å θ = 2.7–31.5°
b = 14.2097 (9) Å µ = 1.23 mm1
c = 9.2422 (6) Å T = 293 K
β = 98.542 (1)° Block, purple
V = 2402.5 (3) Å3 0.42 × 0.20 × 0.12 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 8190 independent reflections
Radiation source: fine-focus sealed tube 6071 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 31.8°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −27→24
Tmin = 0.625, Tmax = 0.869 k = −21→19
30693 measured reflections l = −12→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.4822P] where P = (Fo2 + 2Fc2)/3
8190 reflections (Δ/σ)max = 0.001
292 parameters Δρmax = 0.66 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.254705 (10) 0.544056 (14) 0.720936 (19) 0.03000 (6)
S1 0.19095 (2) 0.69236 (3) 0.69747 (5) 0.04214 (10)
S2 0.33886 (2) 0.59247 (4) 0.55926 (4) 0.04259 (11)
O1 0.32326 (8) 0.33683 (10) 0.76904 (16) 0.0528 (3)
O2 0.15128 (7) 0.47332 (11) 0.94881 (14) 0.0493 (3)
N1 0.27241 (7) 0.39758 (10) 0.69614 (14) 0.0355 (3)
N2 0.17389 (7) 0.50408 (10) 0.56264 (13) 0.0318 (3)
N3 0.12478 (8) 0.56856 (10) 0.50132 (15) 0.0376 (3)
N4 0.07395 (8) 0.71317 (11) 0.49656 (17) 0.0422 (3)
N5 0.21534 (7) 0.51429 (10) 0.92075 (14) 0.0345 (3)
N6 0.33784 (7) 0.58110 (9) 0.87569 (13) 0.0322 (3)
N7 0.40248 (8) 0.61137 (11) 0.83749 (15) 0.0405 (3)
N8 0.47653 (9) 0.63277 (13) 0.66593 (19) 0.0510 (4)
C1 0.17121 (8) 0.41842 (12) 0.51582 (16) 0.0351 (3)
C2 0.22784 (9) 0.35631 (12) 0.59529 (17) 0.0373 (3)
C3 0.11569 (11) 0.38175 (14) 0.39472 (19) 0.0484 (4)
H3A 0.1058 0.4288 0.3199 0.073*
H3B 0.0714 0.3668 0.4324 0.073*
H3C 0.1343 0.3261 0.3542 0.073*
C4 0.23136 (14) 0.25422 (14) 0.5599 (3) 0.0642 (6)
H4A 0.2650 0.2233 0.6340 0.096*
H4B 0.2477 0.2468 0.4667 0.096*
H4C 0.1837 0.2268 0.5563 0.096*
C5 0.32848 (9) 0.58058 (12) 1.01105 (16) 0.0363 (3)
C6 0.25807 (9) 0.53975 (12) 1.03697 (16) 0.0360 (3)
C7 0.38261 (11) 0.61688 (17) 1.13467 (19) 0.0564 (5)
H7A 0.4071 0.6708 1.1026 0.085*
H7B 0.4178 0.5687 1.1662 0.085*
H7C 0.3577 0.6344 1.2146 0.085*
C8 0.24030 (12) 0.52761 (18) 1.18843 (19) 0.0585 (6)
H8A 0.1939 0.4968 1.1841 0.088*
H8B 0.2382 0.5882 1.2337 0.088*
H8C 0.2775 0.4901 1.2448 0.088*
C9 0.12641 (8) 0.65727 (11) 0.55863 (16) 0.0336 (3)
C10 0.06787 (12) 0.81258 (14) 0.5282 (2) 0.0518 (5)
H10A 0.1130 0.8444 0.5164 0.062*
H10B 0.0596 0.8208 0.6286 0.062*
C11 0.00570 (14) 0.85451 (17) 0.4263 (3) 0.0682 (6)
H11A 0.0035 0.9210 0.4438 0.102*
H11B −0.0393 0.8257 0.4429 0.102*
H11C 0.0130 0.8437 0.3270 0.102*
C12 0.41003 (9) 0.61232 (12) 0.69315 (17) 0.0365 (3)
C13 0.49817 (12) 0.64029 (17) 0.5214 (2) 0.0592 (5)
H13A 0.4789 0.6980 0.4747 0.071*
H13B 0.4783 0.5878 0.4612 0.071*
C14 0.58014 (14) 0.64005 (19) 0.5352 (3) 0.0805 (8)
H14A 0.5944 0.6431 0.4395 0.121*
H14B 0.5990 0.5833 0.5831 0.121*
H14C 0.5994 0.6935 0.5916 0.121*
Cl1 0.03036 (3) 0.42615 (5) 0.70489 (5) 0.06167 (15)
Cl2 0.43204 (3) 0.39179 (4) 1.01970 (8) 0.07468 (19)
H1N4 0.0469 (11) 0.6925 (15) 0.440 (2) 0.043 (6)*
H1O2 0.1237 (14) 0.4674 (16) 0.869 (3) 0.063 (7)*
H1N7 0.4416 (12) 0.6072 (15) 0.903 (2) 0.050 (6)*
H1N3 0.0897 (12) 0.5517 (14) 0.456 (2) 0.046 (6)*
H1O1 0.3480 (13) 0.3666 (16) 0.829 (3) 0.055 (7)*
H1N8 0.5085 (13) 0.6376 (15) 0.742 (2) 0.055 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.02577 (10) 0.03547 (11) 0.02620 (9) −0.00196 (8) −0.00457 (6) −0.00166 (7)
S1 0.0396 (2) 0.0390 (2) 0.0418 (2) 0.00331 (17) −0.01353 (16) −0.00551 (16)
S2 0.0354 (2) 0.0605 (3) 0.03009 (18) −0.00913 (19) −0.00085 (14) 0.00010 (17)
O1 0.0535 (8) 0.0468 (8) 0.0519 (7) 0.0120 (6) −0.0134 (6) −0.0010 (6)
O2 0.0352 (7) 0.0699 (9) 0.0409 (6) −0.0168 (6) −0.0004 (5) 0.0024 (6)
N1 0.0325 (7) 0.0383 (7) 0.0339 (6) 0.0037 (5) −0.0007 (5) 0.0004 (5)
N2 0.0265 (6) 0.0375 (7) 0.0294 (5) −0.0032 (5) −0.0027 (4) −0.0015 (5)
N3 0.0293 (7) 0.0418 (8) 0.0367 (7) −0.0015 (6) −0.0116 (5) −0.0021 (5)
N4 0.0345 (8) 0.0467 (8) 0.0407 (7) 0.0033 (6) −0.0094 (6) 0.0010 (6)
N5 0.0284 (6) 0.0406 (7) 0.0329 (6) −0.0031 (5) −0.0014 (5) −0.0009 (5)
N6 0.0267 (6) 0.0373 (7) 0.0301 (6) −0.0021 (5) −0.0042 (4) −0.0001 (5)
N7 0.0287 (7) 0.0552 (9) 0.0345 (6) −0.0070 (6) −0.0062 (5) 0.0000 (6)
N8 0.0317 (8) 0.0696 (11) 0.0509 (9) −0.0086 (7) 0.0035 (6) 0.0000 (8)
C1 0.0299 (8) 0.0434 (9) 0.0310 (7) −0.0063 (6) 0.0010 (5) −0.0059 (6)
C2 0.0375 (8) 0.0375 (8) 0.0363 (7) −0.0027 (7) 0.0037 (6) −0.0039 (6)
C3 0.0464 (10) 0.0529 (11) 0.0416 (8) −0.0103 (8) −0.0073 (7) −0.0127 (8)
C4 0.0733 (15) 0.0421 (11) 0.0715 (14) 0.0015 (10) −0.0082 (11) −0.0138 (10)
C5 0.0341 (8) 0.0420 (9) 0.0293 (6) −0.0019 (7) −0.0070 (6) −0.0018 (6)
C6 0.0366 (8) 0.0408 (8) 0.0287 (6) −0.0006 (7) −0.0017 (6) 0.0004 (6)
C7 0.0516 (11) 0.0787 (14) 0.0341 (8) −0.0182 (10) −0.0090 (7) −0.0095 (9)
C8 0.0573 (12) 0.0867 (16) 0.0300 (8) −0.0173 (11) 0.0020 (7) 0.0016 (9)
C9 0.0272 (7) 0.0411 (8) 0.0306 (6) −0.0015 (6) −0.0018 (5) 0.0019 (6)
C10 0.0532 (11) 0.0482 (11) 0.0497 (10) 0.0130 (9) −0.0064 (8) 0.0007 (8)
C11 0.0692 (15) 0.0600 (13) 0.0677 (13) 0.0232 (11) −0.0153 (11) 0.0093 (11)
C12 0.0301 (8) 0.0401 (8) 0.0379 (7) −0.0024 (6) 0.0001 (6) 0.0004 (6)
C13 0.0509 (12) 0.0671 (13) 0.0637 (12) −0.0074 (10) 0.0218 (10) 0.0040 (10)
C14 0.0590 (15) 0.0699 (16) 0.122 (2) −0.0031 (12) 0.0435 (15) −0.0051 (15)
Cl1 0.0405 (3) 0.0975 (4) 0.0438 (2) −0.0219 (3) −0.00425 (18) −0.0083 (2)
Cl2 0.0534 (3) 0.0625 (3) 0.0937 (4) −0.0016 (3) −0.0363 (3) 0.0016 (3)

Geometric parameters (Å, °)

Ni1—N1 2.1247 (14) C1—C3 1.496 (2)
Ni1—N2 2.0120 (12) C2—C4 1.491 (3)
Ni1—N5 2.1258 (13) C3—H3A 0.9600
Ni1—N6 2.0086 (12) C3—H3B 0.9600
Ni1—S1 2.4089 (5) C3—H3C 0.9600
Ni1—S2 2.4126 (5) C4—H4A 0.9600
S1—C9 1.6927 (15) C4—H4B 0.9600
S2—C12 1.6912 (16) C4—H4C 0.9600
O1—N1 1.3769 (18) C5—C6 1.478 (2)
O1—H1O1 0.79 (2) C5—C7 1.495 (2)
O2—N5 1.3791 (18) C6—C8 1.495 (2)
O2—H1O2 0.83 (2) C7—H7A 0.9600
N1—C2 1.290 (2) C7—H7B 0.9600
N2—C1 1.290 (2) C7—H7C 0.9600
N2—N3 1.3538 (19) C8—H8A 0.9600
N3—C9 1.366 (2) C8—H8B 0.9600
N3—H1N3 0.76 (2) C8—H8C 0.9600
N4—C9 1.318 (2) C10—C11 1.497 (3)
N4—C10 1.450 (3) C10—H10A 0.9700
N4—H1N4 0.73 (2) C10—H10B 0.9700
N5—C6 1.2873 (19) C11—H11A 0.9600
N6—C5 1.288 (2) C11—H11B 0.9600
N6—N7 1.3656 (19) C11—H11C 0.9600
N7—C12 1.362 (2) C13—C14 1.503 (3)
N7—H1N7 0.87 (2) C13—H13A 0.9700
N8—C12 1.324 (2) C13—H13B 0.9700
N8—C13 1.454 (3) C14—H14A 0.9600
N8—H1N8 0.85 (2) C14—H14B 0.9600
C1—C2 1.479 (2) C14—H14C 0.9600
N6—Ni1—N2 177.98 (5) C2—C4—H4A 109.5
N6—Ni1—N1 102.68 (5) C2—C4—H4B 109.5
N2—Ni1—N1 75.81 (5) H4A—C4—H4B 109.5
N6—Ni1—N5 76.02 (5) C2—C4—H4C 109.5
N2—Ni1—N5 105.19 (5) H4A—C4—H4C 109.5
N1—Ni1—N5 88.68 (5) H4B—C4—H4C 109.5
N6—Ni1—S1 98.49 (4) N6—C5—C6 114.12 (13)
N2—Ni1—S1 83.14 (4) N6—C5—C7 124.67 (16)
N1—Ni1—S1 158.21 (4) C6—C5—C7 121.21 (14)
N5—Ni1—S1 91.49 (4) N5—C6—C5 114.95 (13)
N6—Ni1—S2 82.53 (4) N5—C6—C8 123.77 (16)
N2—Ni1—S2 96.22 (4) C5—C6—C8 121.26 (14)
N1—Ni1—S2 95.08 (4) C5—C7—H7A 109.5
N5—Ni1—S2 158.53 (4) C5—C7—H7B 109.5
S1—Ni1—S2 92.701 (19) H7A—C7—H7B 109.5
C9—S1—Ni1 95.24 (6) C5—C7—H7C 109.5
C12—S2—Ni1 95.63 (6) H7A—C7—H7C 109.5
N1—O1—H1O1 107.0 (17) H7B—C7—H7C 109.5
N5—O2—H1O2 107.9 (17) C6—C8—H8A 109.5
C2—N1—O1 112.67 (14) C6—C8—H8B 109.5
C2—N1—Ni1 115.53 (11) H8A—C8—H8B 109.5
O1—N1—Ni1 131.80 (10) C6—C8—H8C 109.5
C1—N2—N3 120.53 (13) H8A—C8—H8C 109.5
C1—N2—Ni1 119.84 (11) H8B—C8—H8C 109.5
N3—N2—Ni1 119.56 (10) N4—C9—N3 114.52 (14)
N2—N3—C9 119.17 (12) N4—C9—S1 122.91 (13)
N2—N3—H1N3 118.9 (16) N3—C9—S1 122.57 (12)
C9—N3—H1N3 118.3 (16) N4—C10—C11 109.65 (17)
C9—N4—C10 125.00 (15) N4—C10—H10A 109.7
C9—N4—H1N4 116.9 (17) C11—C10—H10A 109.7
C10—N4—H1N4 118.1 (17) N4—C10—H10B 109.7
C6—N5—O2 113.58 (13) C11—C10—H10B 109.7
C6—N5—Ni1 114.95 (11) H10A—C10—H10B 108.2
O2—N5—Ni1 131.47 (10) C10—C11—H11A 109.5
C5—N6—N7 120.14 (13) C10—C11—H11B 109.5
C5—N6—Ni1 119.40 (11) H11A—C11—H11B 109.5
N7—N6—Ni1 120.38 (9) C10—C11—H11C 109.5
C12—N7—N6 118.52 (13) H11A—C11—H11C 109.5
C12—N7—H1N7 118.8 (14) H11B—C11—H11C 109.5
N6—N7—H1N7 118.0 (14) N8—C12—N7 114.94 (15)
C12—N8—C13 125.52 (17) N8—C12—S2 122.81 (13)
C12—N8—H1N8 114.4 (15) N7—C12—S2 122.22 (12)
C13—N8—H1N8 119.9 (15) N8—C13—C14 109.5 (2)
N2—C1—C2 114.04 (13) N8—C13—H13A 109.8
N2—C1—C3 124.57 (15) C14—C13—H13A 109.8
C2—C1—C3 121.38 (15) N8—C13—H13B 109.8
N1—C2—C1 114.65 (14) C14—C13—H13B 109.8
N1—C2—C4 123.84 (17) H13A—C13—H13B 108.2
C1—C2—C4 121.51 (15) C13—C14—H14A 109.5
C1—C3—H3A 109.5 C13—C14—H14B 109.5
C1—C3—H3B 109.5 H14A—C14—H14B 109.5
H3A—C3—H3B 109.5 C13—C14—H14C 109.5
C1—C3—H3C 109.5 H14A—C14—H14C 109.5
H3A—C3—H3C 109.5 H14B—C14—H14C 109.5
H3B—C3—H3C 109.5
N6—Ni1—S1—C9 176.16 (7) N1—Ni1—N6—N7 91.00 (12)
N2—Ni1—S1—C9 −2.63 (6) N5—Ni1—N6—N7 176.39 (13)
N1—Ni1—S1—C9 −17.59 (12) S1—Ni1—N6—N7 −94.19 (12)
N5—Ni1—S1—C9 −107.75 (6) S2—Ni1—N6—N7 −2.56 (11)
S2—Ni1—S1—C9 93.31 (6) C5—N6—N7—C12 −179.00 (16)
N6—Ni1—S2—C12 5.33 (7) Ni1—N6—N7—C12 −2.5 (2)
N2—Ni1—S2—C12 −173.07 (7) N3—N2—C1—C2 −179.18 (14)
N1—Ni1—S2—C12 −96.83 (7) Ni1—N2—C1—C2 4.00 (18)
N5—Ni1—S2—C12 2.54 (13) N3—N2—C1—C3 −0.5 (2)
S1—Ni1—S2—C12 103.55 (6) Ni1—N2—C1—C3 −177.35 (13)
N6—Ni1—N1—C2 −176.40 (12) O1—N1—C2—C1 178.83 (13)
N2—Ni1—N1—C2 2.22 (11) Ni1—N1—C2—C1 −0.92 (18)
N5—Ni1—N1—C2 108.25 (12) O1—N1—C2—C4 −0.7 (3)
S1—Ni1—N1—C2 17.54 (19) Ni1—N1—C2—C4 179.55 (16)
S2—Ni1—N1—C2 −92.93 (12) N2—C1—C2—N1 −1.9 (2)
N6—Ni1—N1—O1 3.91 (15) C3—C1—C2—N1 179.44 (15)
N2—Ni1—N1—O1 −177.48 (15) N2—C1—C2—C4 177.68 (18)
N5—Ni1—N1—O1 −71.44 (15) C3—C1—C2—C4 −1.0 (3)
S1—Ni1—N1—O1 −162.15 (10) N7—N6—C5—C6 −175.83 (14)
S2—Ni1—N1—O1 87.38 (14) Ni1—N6—C5—C6 7.6 (2)
N1—Ni1—N2—C1 −3.45 (12) N7—N6—C5—C7 3.9 (3)
N5—Ni1—N2—C1 −88.10 (12) Ni1—N6—C5—C7 −172.64 (15)
S1—Ni1—N2—C1 −177.77 (12) O2—N5—C6—C5 177.75 (14)
S2—Ni1—N2—C1 90.24 (12) Ni1—N5—C6—C5 −3.03 (19)
N1—Ni1—N2—N3 179.70 (12) O2—N5—C6—C8 −0.7 (2)
N5—Ni1—N2—N3 95.05 (12) Ni1—N5—C6—C8 178.50 (15)
S1—Ni1—N2—N3 5.37 (11) N6—C5—C6—N5 −2.7 (2)
S2—Ni1—N2—N3 −86.61 (11) C7—C5—C6—N5 177.58 (17)
C1—N2—N3—C9 176.31 (14) N6—C5—C6—C8 175.84 (17)
Ni1—N2—N3—C9 −6.9 (2) C7—C5—C6—C8 −3.9 (3)
N6—Ni1—N5—C6 5.21 (12) C10—N4—C9—N3 −173.91 (17)
N2—Ni1—N5—C6 −176.46 (12) C10—N4—C9—S1 5.8 (3)
N1—Ni1—N5—C6 108.63 (12) N2—N3—C9—N4 −176.40 (14)
S1—Ni1—N5—C6 −93.17 (12) N2—N3—C9—S1 3.9 (2)
S2—Ni1—N5—C6 8.1 (2) Ni1—S1—C9—N4 −179.39 (14)
N6—Ni1—N5—O2 −175.74 (15) Ni1—S1—C9—N3 0.27 (14)
N2—Ni1—N5—O2 2.59 (15) C9—N4—C10—C11 174.47 (19)
N1—Ni1—N5—O2 −72.32 (14) C13—N8—C12—N7 −178.54 (19)
S1—Ni1—N5—O2 85.88 (14) C13—N8—C12—S2 −0.6 (3)
S2—Ni1—N5—O2 −172.89 (10) N6—N7—C12—N8 −173.06 (16)
N1—Ni1—N6—C5 −92.46 (13) N6—N7—C12—S2 8.9 (2)
N5—Ni1—N6—C5 −7.07 (12) Ni1—S2—C12—N8 173.07 (15)
S1—Ni1—N6—C5 82.35 (13) Ni1—S2—C12—N7 −9.10 (15)
S2—Ni1—N6—C5 173.99 (13) C12—N8—C13—C14 −165.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H1N4···Cl1i 0.730 (19) 2.47 (2) 3.1689 (17) 161 (2)
O2—H1O2···Cl1 0.84 (3) 2.20 (3) 3.0062 (14) 161 (2)
N7—H1N7···Cl2ii 0.87 (2) 2.34 (2) 3.1488 (16) 153.9 (17)
N3—H1N3···Cl1i 0.76 (2) 2.50 (2) 3.2015 (16) 154 (2)
O1—H1O1···Cl2 0.79 (3) 2.20 (3) 2.9396 (16) 157 (2)
N8—H1N8···Cl2ii 0.85 (2) 2.349 (19) 3.1567 (19) 159 (2)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5020).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  3. Choi, K.-Y., Yang, S.-M., Lee, K.-C., Ryu, H., Lee, C. H., Seo, J. & Suh, M. (2008). Transition Met. Chem. 33, 99–105.
  4. Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E. & Sousa, A. (2002). J. Am. Chem. Soc. 124, 5270–5271. [DOI] [PubMed]
  5. Lobana, T. S., Rekha & Butcher, R. J. (2004). Transition Met. Chem. 29, 291–295.
  6. Lobana, T. S., Rekha, Pannu, A. P. S., Hundal, G., Butcher, R. J. & Castineiras, A. (2007). Polyhedron, 26, 2621–2628.
  7. Ming, L.-J. (2003). Med. Res. Rev. 23, 697–762. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811055383/is5020sup1.cif

e-68-0m183-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055383/is5020Isup2.hkl

e-68-0m183-Isup2.hkl (400.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES