Abstract
The water-coordinated Ni2+ cation in the title compound, [Ni(C10H5N3O4)(H2O)]n, assumes an octahedral NiN3O3 coordination mode and is N,O-chelated by two deprotonated 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid (HPyImDC2−) ligands, forming a layer structure extending in the bc plane. The chains are arranged along the b-axis direction, forming a layer structure extending in the bc plane. O—H⋯O hydrogen bonding between the layers results in the formation of a three-dimensional supramolecular framework. The structure is isotypic with the Zn analogue [Li et al. (2009). Cryst. Growth Des. 6, 3423–3431].
Related literature
For the isotypic Zn compound, see: Li et al. (2009 ▶). The HPyImDC2− anion behaves as a T-shaped linker, see: Jing et al. (2010 ▶).
Experimental
Crystal data
[Ni(C10H5N3O4)(H2O)]
M r = 307.88
Monoclinic,
a = 7.5117 (15) Å
b = 11.400 (2) Å
c = 12.896 (4) Å
β = 109.04 (3)°
V = 1043.9 (4) Å3
Z = 4
Mo Kα radiation
μ = 1.88 mm−1
T = 293 K
0.21 × 0.16 × 0.13 mm
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.216, T max = 0.422
10075 measured reflections
2377 independent reflections
1951 reflections with I > 2σ(I)
R int = 0.067
Refinement
R[F 2 > 2σ(F 2)] = 0.051
wR(F 2) = 0.118
S = 1.04
2377 reflections
200 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.55 e Å−3
Δρmin = −1.09 e Å−3
Data collection: SMART (Bruker, 2002 ▶); cell refinement: SAINT (Bruker, 2002 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: XP in SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001900/hp2024sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001900/hp2024Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812001900/hp2024Isup4.cdx
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯O3 | 0.94 (7) | 1.57 (7) | 2.501 (4) | 171 (7) |
| O1W—H1A⋯O3i | 0.78 (9) | 1.95 (9) | 2.726 (5) | 174 (9) |
| O1W—H1B⋯O1ii | 0.73 (6) | 2.35 (6) | 3.007 (5) | 150 (5) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
This work was supported by the Second Self-financing Project of Langfang Scientific and Technological Research and the Development Program of Hebei Province of the People’s Republic of China (grant No. 2011011037).
supplementary crystallographic information
Comment
Li et al. (2009) described the structure of [Zn(C10H5N3O4)H2O] as a stairway-like two-dimensional 3,3-connected layer held together via hydrogen-bonding interactions involving the carboxylic acid and water H atoms to be a three-dimensional network. The HPyImDC2- anion behaves as a T-shaped linker (Jing et al., 2010) with one N atoms and bis-N,O-bridging modes chelating the Ni(II) atoms. The present centrosymmetric Ni analogue, (Fig. 1) is isomorphous, the two compounds having nearly identical unit-cell parameters.
As shown in Fig. 2a, the {NiN3O3} octahedra connect with the T-shaped HPyImDC2- anions to be a one-dimensional chain structure extending in the c direction. Then these one-dimensional chains arrange along the b direction to be a two-dimensional layer structure extending in the bc plane (Fig. 2 b), which are further connected through the hydrogen bonds occurred between O(1 W)—H(1 A)···O(3) (-x + 1,-y,-z) and O(1 W)—H(1B)···O(1)(x-1, y, z), respectively, to construct a three-dimensional supramolecular framework (Fig. 2c and Table 1).
Experimental
Preparation of the complex.
A solution of NiCl26H2O (0.012 g, 0.5 mmol) and H3PyImDC (0.012 g, 0.05 mmol) in DMF (1 ml) and H2O (0.5 ml) was sealed into a 15 ml Teflon-lined stainless autoclave and heated at 433 K for 4 days and then cooled to room temperature gradually to afford well formed green block crystals in about 60% yield (based on Zn). Elemental analysis found (%): C, 39.06; H, 2.30; N, 13.72; Ni, 19.01. H7C10N3O5Ni requires (%): C, 39.01; H, 2.29; N, 13.65; Ni, 19.06. IR (KBr, cm-1): 3571 (s), 3083 (m), 2560 (w), 1675 (w), 1565 (versus), 1271 (s), 842 (m), 567 (w).
Refinement
The H atoms bonded to C were positioned geometrically with C—H distance 0.93–0.96 Å, and treated as riding atoms, with Uiso(H)=1.1Ueq(C). The H atoms bonded to O were located in a difference Fourier map and refined isotropically.
Figures
Fig. 1.
A view of the centrosymmetric molecule of (I), with displacement ellipsoids drawn at the 25% probability level [symmetry code: (i) -x, -y - 1, -z; (ii) x, -y - 1/2, z + 1/2; (iii) x, -y - 1/2, z - 1/2]
Fig. 2.
(a) A view showing the one-dimensional (one-dimensional) chain along the c direction; (b) one-dimensional chains arranged in the b direction to be a two-dimensional layer structure; (c) the two-dimensional layers packed in an AAA way via hydrogen-bonding interactions to be a three-dimensional network.
Crystal data
| [Ni(C10H5N3O4)(H2O)] | Dx = 1.959 Mg m−3 |
| Mr = 307.88 | Melting point: not measured K |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.5117 (15) Å | Cell parameters from 2377 reflections |
| b = 11.400 (2) Å | θ = 3.3–27.4° |
| c = 12.896 (4) Å | µ = 1.88 mm−1 |
| β = 109.04 (3)° | T = 293 K |
| V = 1043.9 (4) Å3 | Block, green |
| Z = 4 | 0.21 × 0.16 × 0.13 mm |
| F(000) = 624 |
Data collection
| Bruker SMART CCD area-detector diffractometer | 2377 independent reflections |
| Radiation source: fine-focus sealed tube | 1951 reflections with I > 2σ(I) |
| graphite | Rint = 0.067 |
| Detector resolution: 9.00cm pixels mm-1 | θmax = 27.4°, θmin = 3.3° |
| phi and ω scans | h = −9→9 |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −14→14 |
| Tmin = 0.216, Tmax = 0.422 | l = −16→16 |
| 10075 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0468P)2 + 3.3079P] where P = (Fo2 + 2Fc2)/3 |
| 2377 reflections | (Δ/σ)max < 0.001 |
| 200 parameters | Δρmax = 0.55 e Å−3 |
| 0 restraints | Δρmin = −1.09 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Ni1 | 0.32031 (7) | −0.26730 (4) | 0.18242 (4) | 0.01465 (17) | |
| O1 | 0.7267 (4) | −0.0698 (3) | 0.1164 (3) | 0.0285 (7) | |
| H1 | 0.740 (10) | −0.063 (6) | 0.046 (6) | 0.08 (2)* | |
| O2 | 0.5375 (4) | −0.1450 (3) | 0.1996 (2) | 0.0234 (7) | |
| O3 | 0.7296 (4) | −0.0603 (3) | −0.0768 (2) | 0.0275 (7) | |
| O4 | 0.5464 (4) | −0.1211 (2) | −0.2426 (2) | 0.0210 (6) | |
| O1W | 0.1140 (5) | −0.1417 (3) | 0.1203 (3) | 0.0243 (7) | |
| H1A | 0.163 (12) | −0.087 (8) | 0.106 (7) | 0.11 (3)* | |
| H1B | 0.041 (8) | −0.120 (5) | 0.142 (4) | 0.030 (16)* | |
| N1 | 0.3422 (5) | −0.2756 (3) | 0.0217 (3) | 0.0158 (7) | |
| N2 | 0.3437 (5) | −0.2632 (3) | −0.1527 (2) | 0.0141 (6) | |
| N3 | −0.1352 (5) | −0.5920 (3) | −0.1621 (3) | 0.0168 (7) | |
| C1 | 0.5860 (6) | −0.1354 (3) | 0.1176 (3) | 0.0178 (8) | |
| C2 | 0.4806 (5) | −0.1986 (3) | 0.0175 (3) | 0.0142 (8) | |
| C3 | 0.4813 (5) | −0.1914 (3) | −0.0886 (3) | 0.0148 (8) | |
| C4 | 0.5922 (6) | −0.1201 (3) | −0.1406 (3) | 0.0172 (8) | |
| C5 | 0.2647 (5) | −0.3130 (3) | −0.0826 (3) | 0.0144 (8) | |
| C6 | 0.1198 (5) | −0.4054 (3) | −0.1148 (3) | 0.0151 (8) | |
| C7 | −0.0568 (6) | −0.3944 (3) | −0.1030 (3) | 0.0161 (8) | |
| H7 | −0.090 (7) | −0.323 (4) | −0.074 (4) | 0.029 (13)* | |
| C8 | −0.1783 (6) | −0.4892 (4) | −0.1272 (3) | 0.0175 (8) | |
| H8 | −0.297 (6) | −0.478 (4) | −0.122 (3) | 0.014 (10)* | |
| C9 | 0.0311 (6) | −0.6007 (4) | −0.1785 (4) | 0.0231 (9) | |
| H9 | 0.047 (6) | −0.676 (4) | −0.206 (4) | 0.023 (12)* | |
| C10 | 0.1607 (6) | −0.5112 (4) | −0.1567 (3) | 0.0222 (9) | |
| H10 | 0.285 (7) | −0.522 (4) | −0.161 (4) | 0.030 (13)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Ni1 | 0.0168 (3) | 0.0167 (3) | 0.0120 (3) | −0.0020 (2) | 0.00689 (19) | −0.0009 (2) |
| O1 | 0.0247 (17) | 0.0394 (19) | 0.0202 (16) | −0.0164 (14) | 0.0058 (13) | −0.0018 (14) |
| O2 | 0.0272 (16) | 0.0310 (16) | 0.0141 (14) | −0.0091 (13) | 0.0097 (12) | −0.0055 (12) |
| O3 | 0.0250 (16) | 0.0351 (18) | 0.0218 (15) | −0.0181 (14) | 0.0068 (13) | 0.0018 (14) |
| O4 | 0.0247 (16) | 0.0259 (15) | 0.0155 (14) | −0.0076 (12) | 0.0107 (12) | 0.0026 (12) |
| O1W | 0.0235 (18) | 0.0257 (17) | 0.0274 (17) | 0.0037 (14) | 0.0134 (14) | 0.0046 (14) |
| N1 | 0.0180 (16) | 0.0177 (16) | 0.0133 (15) | −0.0024 (14) | 0.0074 (13) | 0.0009 (13) |
| N2 | 0.0172 (16) | 0.0152 (15) | 0.0126 (15) | −0.0023 (13) | 0.0085 (13) | 0.0000 (13) |
| N3 | 0.0197 (17) | 0.0187 (16) | 0.0124 (15) | −0.0032 (14) | 0.0059 (13) | 0.0012 (13) |
| C1 | 0.018 (2) | 0.021 (2) | 0.0136 (19) | −0.0036 (16) | 0.0045 (16) | 0.0010 (16) |
| C2 | 0.0104 (18) | 0.0183 (19) | 0.0136 (18) | −0.0043 (14) | 0.0034 (14) | −0.0016 (15) |
| C3 | 0.0158 (19) | 0.0160 (18) | 0.0151 (18) | −0.0024 (15) | 0.0087 (15) | 0.0015 (15) |
| C4 | 0.0165 (19) | 0.020 (2) | 0.018 (2) | −0.0020 (15) | 0.0091 (16) | 0.0035 (16) |
| C5 | 0.016 (2) | 0.0146 (18) | 0.0146 (18) | −0.0030 (15) | 0.0078 (15) | −0.0009 (15) |
| C6 | 0.017 (2) | 0.0199 (19) | 0.0086 (17) | −0.0038 (16) | 0.0054 (14) | 0.0005 (15) |
| C7 | 0.017 (2) | 0.0147 (19) | 0.0164 (19) | 0.0026 (15) | 0.0059 (15) | 0.0001 (16) |
| C8 | 0.014 (2) | 0.023 (2) | 0.0166 (19) | 0.0025 (16) | 0.0065 (15) | 0.0073 (16) |
| C9 | 0.028 (2) | 0.019 (2) | 0.027 (2) | −0.0057 (18) | 0.0151 (18) | −0.0062 (18) |
| C10 | 0.022 (2) | 0.026 (2) | 0.024 (2) | −0.0044 (17) | 0.0150 (18) | −0.0045 (18) |
Geometric parameters (Å, °)
| Ni1—O1W | 2.070 (3) | N2—C3 | 1.365 (5) |
| Ni1—N3i | 2.082 (3) | N2—Ni1iii | 2.105 (3) |
| Ni1—O4ii | 2.089 (3) | N3—C8 | 1.332 (5) |
| Ni1—O2 | 2.103 (3) | N3—C9 | 1.338 (5) |
| Ni1—N2ii | 2.105 (3) | N3—Ni1i | 2.082 (3) |
| Ni1—N1 | 2.134 (3) | C1—C2 | 1.465 (5) |
| O1—C1 | 1.299 (5) | C2—C3 | 1.372 (5) |
| O1—H1 | 0.94 (7) | C3—C4 | 1.474 (5) |
| O2—C1 | 1.230 (5) | C5—C6 | 1.474 (5) |
| O3—C4 | 1.285 (5) | C6—C7 | 1.390 (5) |
| O4—C4 | 1.246 (5) | C6—C10 | 1.396 (6) |
| O4—Ni1iii | 2.089 (3) | C7—C8 | 1.384 (6) |
| O1W—H1A | 0.78 (9) | C7—H7 | 0.96 (5) |
| O1W—H1B | 0.73 (6) | C8—H8 | 0.93 (4) |
| N1—C5 | 1.349 (5) | C9—C10 | 1.374 (6) |
| N1—C2 | 1.375 (5) | C9—H9 | 0.95 (5) |
| N2—C5 | 1.356 (5) | C10—H10 | 0.96 (5) |
| O1W—Ni1—N3i | 95.68 (14) | O2—C1—O1 | 122.1 (4) |
| O1W—Ni1—O4ii | 173.34 (13) | O2—C1—C2 | 119.2 (3) |
| N3i—Ni1—O4ii | 89.89 (13) | O1—C1—C2 | 118.7 (3) |
| O1W—Ni1—O2 | 92.26 (14) | C3—C2—N1 | 109.0 (3) |
| N3i—Ni1—O2 | 170.92 (13) | C3—C2—C1 | 132.3 (3) |
| O4ii—Ni1—O2 | 82.49 (12) | N1—C2—C1 | 118.5 (3) |
| O1W—Ni1—N2ii | 94.71 (13) | N2—C3—C2 | 108.6 (3) |
| N3i—Ni1—N2ii | 94.98 (12) | N2—C3—C4 | 118.9 (3) |
| O4ii—Ni1—N2ii | 81.13 (11) | C2—C3—C4 | 132.4 (4) |
| O2—Ni1—N2ii | 88.74 (12) | O4—C4—O3 | 124.6 (4) |
| O1W—Ni1—N1 | 86.54 (13) | O4—C4—C3 | 118.2 (3) |
| N3i—Ni1—N1 | 95.94 (12) | O3—C4—C3 | 117.1 (3) |
| O4ii—Ni1—N1 | 96.54 (12) | N1—C5—N2 | 113.1 (3) |
| O2—Ni1—N1 | 80.11 (11) | N1—C5—C6 | 123.1 (3) |
| N2ii—Ni1—N1 | 168.83 (12) | N2—C5—C6 | 123.7 (3) |
| C1—O1—H1 | 114 (4) | C7—C6—C10 | 117.3 (4) |
| C1—O2—Ni1 | 113.9 (3) | C7—C6—C5 | 123.2 (4) |
| C4—O4—Ni1iii | 113.4 (2) | C10—C6—C5 | 119.4 (3) |
| Ni1—O1W—H1A | 107 (6) | C8—C7—C6 | 119.2 (4) |
| Ni1—O1W—H1B | 130 (4) | C8—C7—H7 | 121 (3) |
| H1A—O1W—H1B | 107 (7) | C6—C7—H7 | 120 (3) |
| C5—N1—C2 | 104.4 (3) | N3—C8—C7 | 123.3 (4) |
| C5—N1—Ni1 | 146.9 (3) | N3—C8—H8 | 119 (3) |
| C2—N1—Ni1 | 108.0 (2) | C7—C8—H8 | 117 (3) |
| C5—N2—C3 | 104.9 (3) | N3—C9—C10 | 123.2 (4) |
| C5—N2—Ni1iii | 146.2 (3) | N3—C9—H9 | 111 (3) |
| C3—N2—Ni1iii | 108.1 (2) | C10—C9—H9 | 126 (3) |
| C8—N3—C9 | 117.5 (3) | C9—C10—C6 | 119.4 (4) |
| C8—N3—Ni1i | 119.6 (3) | C9—C10—H10 | 122 (3) |
| C9—N3—Ni1i | 122.9 (3) | C6—C10—H10 | 118 (3) |
Symmetry codes: (i) −x, −y−1, −z; (ii) x, −y−1/2, z+1/2; (iii) x, −y−1/2, z−1/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···O3 | 0.94 (7) | 1.57 (7) | 2.501 (4) | 171 (7) |
| O1W—H1A···O3iv | 0.78 (9) | 1.95 (9) | 2.726 (5) | 174 (9) |
| O1W—H1B···O1v | 0.73 (6) | 2.35 (6) | 3.007 (5) | 150 (5) |
Symmetry codes: (iv) −x+1, −y, −z; (v) x−1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2024).
References
- Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Jing, X., Meng, H., Li, G., Yu, Y., Huo, Q., Eddaoudi, M. & Liu, Y. (2010). Cryst. Growth Des. 10, 3489–3495.
- Li, X., Wu, B., Niu, C., Niu, Y. & Zhang, H. (2009). Cryst. Growth Des. 9, 3423–3431.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001900/hp2024sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001900/hp2024Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812001900/hp2024Isup4.cdx
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


