Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 21;68(Pt 2):m187. doi: 10.1107/S1600536812001900

Poly[aqua­[μ3-4-carb­oxy-2-(pyridin-4-yl)-1H-imidazole-5-carboxyl­ato-κ5 N 1,O 5:N 3,O 4:N 2]nickel(II)]

Xue-Min Jing a,*, Shu-zhe Gong b, Li-Wei Xiao a
PMCID: PMC3274911  PMID: 22346858

Abstract

The water-coordinated Ni2+ cation in the title compound, [Ni(C10H5N3O4)(H2O)]n, assumes an octa­hedral NiN3O3 coord­ination mode and is N,O-chelated by two deprotonated 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarb­oxy­lic acid (HPyImDC2−) ligands, forming a layer structure extending in the bc plane. The chains are arranged along the b-axis direction, forming a layer structure extending in the bc plane. O—H⋯O hydrogen bonding between the layers results in the formation of a three-dimensional supra­molecular framework. The structure is isotypic with the Zn analogue [Li et al. (2009). Cryst. Growth Des. 6, 3423–3431].

Related literature

For the isotypic Zn compound, see: Li et al. (2009). The HPyImDC2− anion behaves as a T-shaped linker, see: Jing et al. (2010).graphic file with name e-68-0m187-scheme1.jpg

Experimental

Crystal data

  • [Ni(C10H5N3O4)(H2O)]

  • M r = 307.88

  • Monoclinic, Inline graphic

  • a = 7.5117 (15) Å

  • b = 11.400 (2) Å

  • c = 12.896 (4) Å

  • β = 109.04 (3)°

  • V = 1043.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 293 K

  • 0.21 × 0.16 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.216, T max = 0.422

  • 10075 measured reflections

  • 2377 independent reflections

  • 1951 reflections with I > 2σ(I)

  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.118

  • S = 1.04

  • 2377 reflections

  • 200 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −1.09 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001900/hp2024sup1.cif

e-68-0m187-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001900/hp2024Isup2.hkl

e-68-0m187-Isup2.hkl (116.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812001900/hp2024Isup4.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.94 (7) 1.57 (7) 2.501 (4) 171 (7)
O1W—H1A⋯O3i 0.78 (9) 1.95 (9) 2.726 (5) 174 (9)
O1W—H1B⋯O1ii 0.73 (6) 2.35 (6) 3.007 (5) 150 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Second Self-financing Project of Langfang Scientific and Technological Research and the Development Program of Hebei Province of the People’s Republic of China (grant No. 2011011037).

supplementary crystallographic information

Comment

Li et al. (2009) described the structure of [Zn(C10H5N3O4)H2O] as a stairway-like two-dimensional 3,3-connected layer held together via hydrogen-bonding interactions involving the carboxylic acid and water H atoms to be a three-dimensional network. The HPyImDC2- anion behaves as a T-shaped linker (Jing et al., 2010) with one N atoms and bis-N,O-bridging modes chelating the Ni(II) atoms. The present centrosymmetric Ni analogue, (Fig. 1) is isomorphous, the two compounds having nearly identical unit-cell parameters.

As shown in Fig. 2a, the {NiN3O3} octahedra connect with the T-shaped HPyImDC2- anions to be a one-dimensional chain structure extending in the c direction. Then these one-dimensional chains arrange along the b direction to be a two-dimensional layer structure extending in the bc plane (Fig. 2 b), which are further connected through the hydrogen bonds occurred between O(1 W)—H(1 A)···O(3) (-x + 1,-y,-z) and O(1 W)—H(1B)···O(1)(x-1, y, z), respectively, to construct a three-dimensional supramolecular framework (Fig. 2c and Table 1).

Experimental

Preparation of the complex.

A solution of NiCl26H2O (0.012 g, 0.5 mmol) and H3PyImDC (0.012 g, 0.05 mmol) in DMF (1 ml) and H2O (0.5 ml) was sealed into a 15 ml Teflon-lined stainless autoclave and heated at 433 K for 4 days and then cooled to room temperature gradually to afford well formed green block crystals in about 60% yield (based on Zn). Elemental analysis found (%): C, 39.06; H, 2.30; N, 13.72; Ni, 19.01. H7C10N3O5Ni requires (%): C, 39.01; H, 2.29; N, 13.65; Ni, 19.06. IR (KBr, cm-1): 3571 (s), 3083 (m), 2560 (w), 1675 (w), 1565 (versus), 1271 (s), 842 (m), 567 (w).

Refinement

The H atoms bonded to C were positioned geometrically with C—H distance 0.93–0.96 Å, and treated as riding atoms, with Uiso(H)=1.1Ueq(C). The H atoms bonded to O were located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

A view of the centrosymmetric molecule of (I), with displacement ellipsoids drawn at the 25% probability level [symmetry code: (i) -x, -y - 1, -z; (ii) x, -y - 1/2, z + 1/2; (iii) x, -y - 1/2, z - 1/2]

Fig. 2.

Fig. 2.

(a) A view showing the one-dimensional (one-dimensional) chain along the c direction; (b) one-dimensional chains arranged in the b direction to be a two-dimensional layer structure; (c) the two-dimensional layers packed in an AAA way via hydrogen-bonding interactions to be a three-dimensional network.

Crystal data

[Ni(C10H5N3O4)(H2O)] Dx = 1.959 Mg m3
Mr = 307.88 Melting point: not measured K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.5117 (15) Å Cell parameters from 2377 reflections
b = 11.400 (2) Å θ = 3.3–27.4°
c = 12.896 (4) Å µ = 1.88 mm1
β = 109.04 (3)° T = 293 K
V = 1043.9 (4) Å3 Block, green
Z = 4 0.21 × 0.16 × 0.13 mm
F(000) = 624

Data collection

Bruker SMART CCD area-detector diffractometer 2377 independent reflections
Radiation source: fine-focus sealed tube 1951 reflections with I > 2σ(I)
graphite Rint = 0.067
Detector resolution: 9.00cm pixels mm-1 θmax = 27.4°, θmin = 3.3°
phi and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −14→14
Tmin = 0.216, Tmax = 0.422 l = −16→16
10075 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0468P)2 + 3.3079P] where P = (Fo2 + 2Fc2)/3
2377 reflections (Δ/σ)max < 0.001
200 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −1.09 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.32031 (7) −0.26730 (4) 0.18242 (4) 0.01465 (17)
O1 0.7267 (4) −0.0698 (3) 0.1164 (3) 0.0285 (7)
H1 0.740 (10) −0.063 (6) 0.046 (6) 0.08 (2)*
O2 0.5375 (4) −0.1450 (3) 0.1996 (2) 0.0234 (7)
O3 0.7296 (4) −0.0603 (3) −0.0768 (2) 0.0275 (7)
O4 0.5464 (4) −0.1211 (2) −0.2426 (2) 0.0210 (6)
O1W 0.1140 (5) −0.1417 (3) 0.1203 (3) 0.0243 (7)
H1A 0.163 (12) −0.087 (8) 0.106 (7) 0.11 (3)*
H1B 0.041 (8) −0.120 (5) 0.142 (4) 0.030 (16)*
N1 0.3422 (5) −0.2756 (3) 0.0217 (3) 0.0158 (7)
N2 0.3437 (5) −0.2632 (3) −0.1527 (2) 0.0141 (6)
N3 −0.1352 (5) −0.5920 (3) −0.1621 (3) 0.0168 (7)
C1 0.5860 (6) −0.1354 (3) 0.1176 (3) 0.0178 (8)
C2 0.4806 (5) −0.1986 (3) 0.0175 (3) 0.0142 (8)
C3 0.4813 (5) −0.1914 (3) −0.0886 (3) 0.0148 (8)
C4 0.5922 (6) −0.1201 (3) −0.1406 (3) 0.0172 (8)
C5 0.2647 (5) −0.3130 (3) −0.0826 (3) 0.0144 (8)
C6 0.1198 (5) −0.4054 (3) −0.1148 (3) 0.0151 (8)
C7 −0.0568 (6) −0.3944 (3) −0.1030 (3) 0.0161 (8)
H7 −0.090 (7) −0.323 (4) −0.074 (4) 0.029 (13)*
C8 −0.1783 (6) −0.4892 (4) −0.1272 (3) 0.0175 (8)
H8 −0.297 (6) −0.478 (4) −0.122 (3) 0.014 (10)*
C9 0.0311 (6) −0.6007 (4) −0.1785 (4) 0.0231 (9)
H9 0.047 (6) −0.676 (4) −0.206 (4) 0.023 (12)*
C10 0.1607 (6) −0.5112 (4) −0.1567 (3) 0.0222 (9)
H10 0.285 (7) −0.522 (4) −0.161 (4) 0.030 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0168 (3) 0.0167 (3) 0.0120 (3) −0.0020 (2) 0.00689 (19) −0.0009 (2)
O1 0.0247 (17) 0.0394 (19) 0.0202 (16) −0.0164 (14) 0.0058 (13) −0.0018 (14)
O2 0.0272 (16) 0.0310 (16) 0.0141 (14) −0.0091 (13) 0.0097 (12) −0.0055 (12)
O3 0.0250 (16) 0.0351 (18) 0.0218 (15) −0.0181 (14) 0.0068 (13) 0.0018 (14)
O4 0.0247 (16) 0.0259 (15) 0.0155 (14) −0.0076 (12) 0.0107 (12) 0.0026 (12)
O1W 0.0235 (18) 0.0257 (17) 0.0274 (17) 0.0037 (14) 0.0134 (14) 0.0046 (14)
N1 0.0180 (16) 0.0177 (16) 0.0133 (15) −0.0024 (14) 0.0074 (13) 0.0009 (13)
N2 0.0172 (16) 0.0152 (15) 0.0126 (15) −0.0023 (13) 0.0085 (13) 0.0000 (13)
N3 0.0197 (17) 0.0187 (16) 0.0124 (15) −0.0032 (14) 0.0059 (13) 0.0012 (13)
C1 0.018 (2) 0.021 (2) 0.0136 (19) −0.0036 (16) 0.0045 (16) 0.0010 (16)
C2 0.0104 (18) 0.0183 (19) 0.0136 (18) −0.0043 (14) 0.0034 (14) −0.0016 (15)
C3 0.0158 (19) 0.0160 (18) 0.0151 (18) −0.0024 (15) 0.0087 (15) 0.0015 (15)
C4 0.0165 (19) 0.020 (2) 0.018 (2) −0.0020 (15) 0.0091 (16) 0.0035 (16)
C5 0.016 (2) 0.0146 (18) 0.0146 (18) −0.0030 (15) 0.0078 (15) −0.0009 (15)
C6 0.017 (2) 0.0199 (19) 0.0086 (17) −0.0038 (16) 0.0054 (14) 0.0005 (15)
C7 0.017 (2) 0.0147 (19) 0.0164 (19) 0.0026 (15) 0.0059 (15) 0.0001 (16)
C8 0.014 (2) 0.023 (2) 0.0166 (19) 0.0025 (16) 0.0065 (15) 0.0073 (16)
C9 0.028 (2) 0.019 (2) 0.027 (2) −0.0057 (18) 0.0151 (18) −0.0062 (18)
C10 0.022 (2) 0.026 (2) 0.024 (2) −0.0044 (17) 0.0150 (18) −0.0045 (18)

Geometric parameters (Å, °)

Ni1—O1W 2.070 (3) N2—C3 1.365 (5)
Ni1—N3i 2.082 (3) N2—Ni1iii 2.105 (3)
Ni1—O4ii 2.089 (3) N3—C8 1.332 (5)
Ni1—O2 2.103 (3) N3—C9 1.338 (5)
Ni1—N2ii 2.105 (3) N3—Ni1i 2.082 (3)
Ni1—N1 2.134 (3) C1—C2 1.465 (5)
O1—C1 1.299 (5) C2—C3 1.372 (5)
O1—H1 0.94 (7) C3—C4 1.474 (5)
O2—C1 1.230 (5) C5—C6 1.474 (5)
O3—C4 1.285 (5) C6—C7 1.390 (5)
O4—C4 1.246 (5) C6—C10 1.396 (6)
O4—Ni1iii 2.089 (3) C7—C8 1.384 (6)
O1W—H1A 0.78 (9) C7—H7 0.96 (5)
O1W—H1B 0.73 (6) C8—H8 0.93 (4)
N1—C5 1.349 (5) C9—C10 1.374 (6)
N1—C2 1.375 (5) C9—H9 0.95 (5)
N2—C5 1.356 (5) C10—H10 0.96 (5)
O1W—Ni1—N3i 95.68 (14) O2—C1—O1 122.1 (4)
O1W—Ni1—O4ii 173.34 (13) O2—C1—C2 119.2 (3)
N3i—Ni1—O4ii 89.89 (13) O1—C1—C2 118.7 (3)
O1W—Ni1—O2 92.26 (14) C3—C2—N1 109.0 (3)
N3i—Ni1—O2 170.92 (13) C3—C2—C1 132.3 (3)
O4ii—Ni1—O2 82.49 (12) N1—C2—C1 118.5 (3)
O1W—Ni1—N2ii 94.71 (13) N2—C3—C2 108.6 (3)
N3i—Ni1—N2ii 94.98 (12) N2—C3—C4 118.9 (3)
O4ii—Ni1—N2ii 81.13 (11) C2—C3—C4 132.4 (4)
O2—Ni1—N2ii 88.74 (12) O4—C4—O3 124.6 (4)
O1W—Ni1—N1 86.54 (13) O4—C4—C3 118.2 (3)
N3i—Ni1—N1 95.94 (12) O3—C4—C3 117.1 (3)
O4ii—Ni1—N1 96.54 (12) N1—C5—N2 113.1 (3)
O2—Ni1—N1 80.11 (11) N1—C5—C6 123.1 (3)
N2ii—Ni1—N1 168.83 (12) N2—C5—C6 123.7 (3)
C1—O1—H1 114 (4) C7—C6—C10 117.3 (4)
C1—O2—Ni1 113.9 (3) C7—C6—C5 123.2 (4)
C4—O4—Ni1iii 113.4 (2) C10—C6—C5 119.4 (3)
Ni1—O1W—H1A 107 (6) C8—C7—C6 119.2 (4)
Ni1—O1W—H1B 130 (4) C8—C7—H7 121 (3)
H1A—O1W—H1B 107 (7) C6—C7—H7 120 (3)
C5—N1—C2 104.4 (3) N3—C8—C7 123.3 (4)
C5—N1—Ni1 146.9 (3) N3—C8—H8 119 (3)
C2—N1—Ni1 108.0 (2) C7—C8—H8 117 (3)
C5—N2—C3 104.9 (3) N3—C9—C10 123.2 (4)
C5—N2—Ni1iii 146.2 (3) N3—C9—H9 111 (3)
C3—N2—Ni1iii 108.1 (2) C10—C9—H9 126 (3)
C8—N3—C9 117.5 (3) C9—C10—C6 119.4 (4)
C8—N3—Ni1i 119.6 (3) C9—C10—H10 122 (3)
C9—N3—Ni1i 122.9 (3) C6—C10—H10 118 (3)

Symmetry codes: (i) −x, −y−1, −z; (ii) x, −y−1/2, z+1/2; (iii) x, −y−1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3 0.94 (7) 1.57 (7) 2.501 (4) 171 (7)
O1W—H1A···O3iv 0.78 (9) 1.95 (9) 2.726 (5) 174 (9)
O1W—H1B···O1v 0.73 (6) 2.35 (6) 3.007 (5) 150 (5)

Symmetry codes: (iv) −x+1, −y, −z; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2024).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Jing, X., Meng, H., Li, G., Yu, Y., Huo, Q., Eddaoudi, M. & Liu, Y. (2010). Cryst. Growth Des. 10, 3489–3495.
  3. Li, X., Wu, B., Niu, C., Niu, Y. & Zhang, H. (2009). Cryst. Growth Des. 9, 3423–3431.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001900/hp2024sup1.cif

e-68-0m187-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001900/hp2024Isup2.hkl

e-68-0m187-Isup2.hkl (116.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812001900/hp2024Isup4.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES