Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 21;68(Pt 2):m197. doi: 10.1107/S1600536812002176

(Ferrocenylmeth­yl)trimethyl­ammonium perchlorate

Ying-Chun Wang a,*
PMCID: PMC3274918  PMID: 22346865

Abstract

The asymmetric unit of the title complex, [Fe(C5H5)(C9H15N)]ClO4, contains one discrete (ferrocenylmeth­yl)trimethyl­ammonium cation and one perchlorate anion. The anion is disordered over two sets of sites, with refined occupancies of 0.776 (8) and 0.224 (8). The distances from the Fe atom to the centroids of the unsubstituted and substituted cyclo­penta­dienyl (Cp) rings are 1.650 (1) and 1.640 (1) Å, respectively. The Cp rings form a dihedral angle of 2.66 (3)°.

Related literature

For a related structure, see: Pullen et al. (1998). For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a ,b ,c ); Fu et al. (2007, 2008, 2009); Fu & Xiong (2008).graphic file with name e-68-0m197-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C9H15N)]ClO4

  • M r = 357.61

  • Monoclinic, Inline graphic

  • a = 8.5972 (17) Å

  • b = 13.783 (3) Å

  • c = 13.096 (3) Å

  • β = 101.23 (3)°

  • V = 1522.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 298 K

  • 0.10 × 0.03 × 0.03 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.910, T max = 1.000

  • 15527 measured reflections

  • 3479 independent reflections

  • 2642 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.148

  • S = 1.07

  • 3479 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812002176/lh5405sup1.cif

e-68-0m197-sup1.cif (34.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002176/lh5405Isup2.hkl

e-68-0m197-Isup2.hkl (170.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Doctoral Foundation of Southeast University, China.

supplementary crystallographic information

Comment

Simple organic salts containig amino cations have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Fu et al., 2011a, b and c). With the purpose of obtaining phase transition crystals of amino compounds, various amines have been studied and a series of new materials with this organic molecules have been elaborated (Fu et al. 2007, 2008, 2009; Fu & Xiong 2008). Herein we present the crystal structure of the title compound (I), which may be used as a cation in organic salts. In this study, we describe the crystal structure of this compound.

The asymmetric unit of (I) contains one discrete trimethyl(ferrocenyl)methylammonium cation and one ClO4- anion (Fig. 1). The anion is disordered over two sets of sites with refined occupancies 0.776 (8) and 0.224 (8). The distances from the Fe atom to the centroids of the unsubstituted and substituted cyclopentadienyl (Cp) rings are 1.650 (1) and 1.640 (1)Å , respectively. The dihedral angles between the two Cp rings are 2.66 (3)°. The two cyclopentadienyl rings of the ferrocenyl group are almost eclipsed with the (C—Cg1—Cg2—C) torsion angles in the two Cp rings in the range of 3.67 (3) to 4.74 (3)°. For a comparison of bond lengths and angles, see those in the related structure (Pullen et al., 1998).

Experimental

A mixture of commercial trimethyl(ferrocenyl)methylamine (0.4 mmol) and HClO4 (0.4 mmol) were dissolved in EtOH/distilled water (1:1 v/v) solvent. The solution was slowly evaporated in air affording red block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.97 Å(C methylene), C-H = 0.98 Å(C ferrocenyl) and C-H = 0.96 Å(C methyl) with Uiso(H) = 1.2Ueq(C except methyl) and Uiso(H) = 1.5Ueq(methyl).

The ClO4- anion is disordered over sites and refined using the PART in struction in SHELXL (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

A view of the title compound with displacement ellipsoids drawn at the 30% probability level. The disorder is not shown.

Crystal data

[Fe(C5H5)(C9H15N)]ClO4 F(000) = 744
Mr = 357.61 Dx = 1.561 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3479 reflections
a = 8.5972 (17) Å θ = 3.0–27.5°
b = 13.783 (3) Å µ = 1.18 mm1
c = 13.096 (3) Å T = 298 K
β = 101.23 (3)° Block, red
V = 1522.1 (6) Å3 0.10 × 0.03 × 0.03 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer 3479 independent reflections
Radiation source: fine-focus sealed tube 2642 reflections with I > 2σ(I)
graphite Rint = 0.062
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.0°
CCD profile fitting scans h = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −17→17
Tmin = 0.910, Tmax = 1.000 l = −16→17
15527 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0595P)2 + 2.0318P] where P = (Fo2 + 2Fc2)/3
3479 reflections (Δ/σ)max < 0.001
218 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.73 e Å3

Special details

Experimental. The dielectric constant of title compound as a function of temperature indicates that the permittivity is basically temperature-independent, suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (411 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant ranging from 4.4 to 9.5).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.66928 (6) 0.67531 (3) 0.46111 (4) 0.03474 (18)
N1 0.2467 (4) 0.8607 (2) 0.3523 (2) 0.0387 (7)
C1 0.6435 (5) 0.6059 (3) 0.3215 (3) 0.0439 (9)
H1A 0.5675 0.6231 0.2581 0.053*
C2 0.6154 (5) 0.5411 (3) 0.3991 (3) 0.0463 (9)
H2A 0.5169 0.5052 0.3989 0.056*
C3 0.7542 (6) 0.5370 (3) 0.4773 (4) 0.0528 (11)
H3A 0.7694 0.4977 0.5408 0.063*
C4 0.8680 (5) 0.5997 (3) 0.4467 (3) 0.0516 (10)
H4A 0.9756 0.6117 0.4857 0.062*
C5 0.7992 (5) 0.6413 (3) 0.3501 (3) 0.0469 (9)
H5A 0.8503 0.6877 0.3105 0.056*
C6 0.4993 (5) 0.7790 (2) 0.4457 (3) 0.0371 (8)
C7 0.6527 (5) 0.8227 (3) 0.4722 (3) 0.0476 (10)
H7A 0.6967 0.8702 0.4299 0.057*
C8 0.7317 (6) 0.7840 (3) 0.5682 (4) 0.0568 (11)
H8A 0.8396 0.7999 0.6041 0.068*
C9 0.6286 (6) 0.7178 (3) 0.6028 (3) 0.0577 (12)
H9A 0.6532 0.6796 0.6670 0.069*
C10 0.4849 (5) 0.7132 (3) 0.5283 (3) 0.0455 (9)
H10A 0.3925 0.6730 0.5327 0.055*
C11 0.3848 (5) 0.7937 (3) 0.3457 (3) 0.0415 (8)
H11A 0.3429 0.7310 0.3203 0.050*
H11B 0.4419 0.8200 0.2949 0.050*
C12 0.3026 (6) 0.9568 (3) 0.3968 (4) 0.0570 (11)
H12A 0.3564 0.9487 0.4677 0.085*
H12B 0.2133 0.9991 0.3944 0.085*
H12C 0.3741 0.9845 0.3569 0.085*
C13 0.1414 (5) 0.8167 (3) 0.4173 (4) 0.0587 (11)
H13A 0.2010 0.8051 0.4862 0.088*
H13B 0.1000 0.7563 0.3869 0.088*
H13C 0.0554 0.8601 0.4208 0.088*
C14 0.1527 (6) 0.8749 (4) 0.2435 (3) 0.0603 (12)
H14A 0.0651 0.9177 0.2455 0.091*
H14B 0.1134 0.8134 0.2152 0.091*
H14C 0.2197 0.9028 0.2006 0.091*
Cl2 0.18301 (16) 0.55643 (10) 0.19867 (10) 0.0700 (4) 0.776 (8)
O1' 0.1752 (13) 0.5939 (6) 0.2902 (6) 0.155 (4) 0.776 (8)
O2' 0.2997 (11) 0.6113 (8) 0.1573 (5) 0.126 (4) 0.776 (8)
O3' 0.0584 (9) 0.5454 (9) 0.1175 (7) 0.176 (5) 0.776 (8)
O4' 0.2388 (19) 0.4651 (7) 0.2210 (8) 0.226 (6) 0.776 (8)
Cl1 0.18301 (16) 0.55643 (10) 0.19867 (10) 0.0700 (4) 0.224 (8)
O1 0.109 (3) 0.6459 (15) 0.174 (2) 0.120 (10) 0.224 (8)
O2 0.318 (2) 0.547 (2) 0.155 (2) 0.100 (11) 0.224 (8)
O4 0.204 (2) 0.5450 (16) 0.2919 (16) 0.0700 (4) 0.224 (8)
O3 0.107 (3) 0.4943 (15) 0.1361 (16) 0.0700 (4) 0.224 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0385 (3) 0.0296 (3) 0.0361 (3) 0.0032 (2) 0.0074 (2) 0.0004 (2)
N1 0.0406 (17) 0.0310 (15) 0.0446 (17) 0.0015 (13) 0.0084 (14) 0.0006 (13)
C1 0.049 (2) 0.042 (2) 0.042 (2) 0.0069 (17) 0.0115 (17) −0.0069 (16)
C2 0.050 (2) 0.0316 (19) 0.062 (3) 0.0002 (16) 0.022 (2) −0.0085 (17)
C3 0.068 (3) 0.036 (2) 0.059 (3) 0.020 (2) 0.024 (2) 0.0103 (18)
C4 0.040 (2) 0.057 (3) 0.057 (2) 0.0133 (19) 0.0088 (19) 0.002 (2)
C5 0.043 (2) 0.052 (2) 0.051 (2) 0.0006 (18) 0.0206 (19) 0.0021 (19)
C6 0.045 (2) 0.0279 (18) 0.0401 (19) 0.0057 (15) 0.0118 (16) −0.0019 (14)
C7 0.052 (2) 0.0315 (19) 0.059 (3) −0.0043 (17) 0.008 (2) −0.0072 (18)
C8 0.059 (3) 0.048 (2) 0.057 (3) 0.003 (2) −0.006 (2) −0.017 (2)
C9 0.080 (3) 0.057 (3) 0.035 (2) 0.021 (2) 0.008 (2) −0.0040 (19)
C10 0.057 (2) 0.039 (2) 0.045 (2) 0.0123 (18) 0.0210 (19) 0.0012 (17)
C11 0.045 (2) 0.0354 (19) 0.045 (2) 0.0048 (16) 0.0113 (17) −0.0035 (16)
C12 0.063 (3) 0.031 (2) 0.073 (3) 0.0022 (19) 0.003 (2) −0.0063 (19)
C13 0.048 (2) 0.064 (3) 0.068 (3) −0.003 (2) 0.020 (2) 0.005 (2)
C14 0.059 (3) 0.063 (3) 0.053 (3) 0.009 (2) −0.003 (2) 0.002 (2)
Cl2 0.0726 (8) 0.0714 (9) 0.0628 (7) −0.0219 (6) 0.0057 (6) −0.0068 (6)
O1' 0.283 (11) 0.088 (5) 0.131 (6) −0.044 (6) 0.131 (7) −0.052 (5)
O2' 0.124 (7) 0.192 (9) 0.060 (4) −0.107 (7) 0.012 (4) 0.007 (5)
O3' 0.089 (5) 0.237 (12) 0.166 (8) −0.068 (6) −0.063 (5) 0.090 (7)
O4' 0.406 (18) 0.094 (6) 0.182 (9) 0.117 (9) 0.066 (10) 0.035 (6)
Cl1 0.0726 (8) 0.0714 (9) 0.0628 (7) −0.0219 (6) 0.0057 (6) −0.0068 (6)
O1 0.125 (19) 0.056 (11) 0.16 (2) 0.058 (12) −0.015 (16) −0.007 (13)
O2 0.017 (7) 0.15 (2) 0.14 (2) −0.028 (11) 0.024 (9) −0.07 (2)
O4 0.0726 (8) 0.0714 (9) 0.0628 (7) −0.0219 (6) 0.0057 (6) −0.0068 (6)
O3 0.0726 (8) 0.0714 (9) 0.0628 (7) −0.0219 (6) 0.0057 (6) −0.0068 (6)

Geometric parameters (Å, °)

Fe1—C10 2.025 (4) C6—C10 1.435 (5)
Fe1—C6 2.026 (4) C6—C11 1.491 (5)
Fe1—C1 2.037 (4) C7—C8 1.412 (6)
Fe1—C2 2.037 (4) C7—H7A 0.9800
Fe1—C3 2.037 (4) C8—C9 1.407 (7)
Fe1—C9 2.040 (4) C8—H8A 0.9800
Fe1—C4 2.041 (4) C9—C10 1.418 (6)
Fe1—C7 2.044 (4) C9—H9A 0.9800
Fe1—C8 2.051 (4) C10—H10A 0.9800
Fe1—C5 2.053 (4) C11—H11A 0.9700
N1—C13 1.488 (5) C11—H11B 0.9700
N1—C12 1.489 (5) C12—H12A 0.9600
N1—C14 1.507 (5) C12—H12B 0.9600
N1—C11 1.520 (5) C12—H12C 0.9600
C1—C5 1.405 (6) C13—H13A 0.9600
C1—C2 1.408 (6) C13—H13B 0.9600
C1—H1A 0.9800 C13—H13C 0.9600
C2—C3 1.415 (6) C14—H14A 0.9600
C2—H2A 0.9800 C14—H14B 0.9600
C3—C4 1.420 (6) C14—H14C 0.9600
C3—H3A 0.9800 Cl2—O1' 1.319 (6)
C4—C5 1.410 (6) Cl2—O4' 1.358 (7)
C4—H4A 0.9800 Cl2—O3' 1.363 (7)
C5—H5A 0.9800 Cl2—O2' 1.443 (6)
C6—C7 1.430 (5)
C10—Fe1—C6 41.48 (15) C3—C4—Fe1 69.5 (2)
C10—Fe1—C1 123.60 (17) C5—C4—H4A 126.0
C6—Fe1—C1 106.95 (16) C3—C4—H4A 126.0
C10—Fe1—C2 105.73 (17) Fe1—C4—H4A 126.0
C6—Fe1—C2 119.82 (16) C1—C5—C4 108.0 (4)
C1—Fe1—C2 40.45 (16) C1—C5—Fe1 69.3 (2)
C10—Fe1—C3 119.43 (17) C4—C5—Fe1 69.4 (2)
C6—Fe1—C3 155.14 (18) C1—C5—H5A 126.0
C1—Fe1—C3 68.17 (17) C4—C5—H5A 126.0
C2—Fe1—C3 40.63 (18) Fe1—C5—H5A 126.0
C10—Fe1—C9 40.84 (18) C7—C6—C10 107.1 (4)
C6—Fe1—C9 68.88 (16) C7—C6—C11 125.1 (3)
C1—Fe1—C9 160.6 (2) C10—C6—C11 127.5 (4)
C2—Fe1—C9 123.89 (19) C7—C6—Fe1 70.1 (2)
C3—Fe1—C9 107.20 (18) C10—C6—Fe1 69.2 (2)
C10—Fe1—C4 155.77 (17) C11—C6—Fe1 121.6 (2)
C6—Fe1—C4 162.09 (17) C8—C7—C6 108.5 (4)
C1—Fe1—C4 67.90 (17) C8—C7—Fe1 70.1 (2)
C2—Fe1—C4 68.21 (17) C6—C7—Fe1 68.8 (2)
C3—Fe1—C4 40.75 (18) C8—C7—H7A 125.7
C9—Fe1—C4 121.73 (18) C6—C7—H7A 125.7
C10—Fe1—C7 68.97 (17) Fe1—C7—H7A 125.7
C6—Fe1—C7 41.13 (15) C9—C8—C7 107.9 (4)
C1—Fe1—C7 122.26 (17) C9—C8—Fe1 69.5 (2)
C2—Fe1—C7 156.55 (17) C7—C8—Fe1 69.6 (2)
C3—Fe1—C7 162.02 (18) C9—C8—H8A 126.0
C9—Fe1—C7 67.86 (18) C7—C8—H8A 126.0
C4—Fe1—C7 125.84 (18) Fe1—C8—H8A 126.0
C10—Fe1—C8 68.72 (19) C8—C9—C10 109.0 (4)
C6—Fe1—C8 68.92 (17) C8—C9—Fe1 70.3 (3)
C1—Fe1—C8 157.69 (19) C10—C9—Fe1 69.0 (2)
C2—Fe1—C8 160.89 (19) C8—C9—H9A 125.5
C3—Fe1—C8 124.85 (19) C10—C9—H9A 125.5
C9—Fe1—C8 40.2 (2) Fe1—C9—H9A 125.5
C4—Fe1—C8 108.92 (19) C9—C10—C6 107.4 (4)
C7—Fe1—C8 40.35 (17) C9—C10—Fe1 70.1 (2)
C10—Fe1—C5 161.13 (17) C6—C10—Fe1 69.3 (2)
C6—Fe1—C5 124.89 (16) C9—C10—H10A 126.3
C1—Fe1—C5 40.19 (16) C6—C10—H10A 126.3
C2—Fe1—C5 67.84 (17) Fe1—C10—H10A 126.3
C3—Fe1—C5 68.07 (17) C6—C11—N1 115.0 (3)
C9—Fe1—C5 157.41 (19) C6—C11—H11A 108.5
C4—Fe1—C5 40.28 (17) N1—C11—H11A 108.5
C7—Fe1—C5 109.43 (18) C6—C11—H11B 108.5
C8—Fe1—C5 123.05 (19) N1—C11—H11B 108.5
C13—N1—C12 108.9 (3) H11A—C11—H11B 107.5
C13—N1—C14 108.7 (3) N1—C12—H12A 109.5
C12—N1—C14 109.1 (3) N1—C12—H12B 109.5
C13—N1—C11 110.7 (3) H12A—C12—H12B 109.5
C12—N1—C11 111.5 (3) N1—C12—H12C 109.5
C14—N1—C11 107.9 (3) H12A—C12—H12C 109.5
C5—C1—C2 108.4 (4) H12B—C12—H12C 109.5
C5—C1—Fe1 70.5 (2) N1—C13—H13A 109.5
C2—C1—Fe1 69.8 (2) N1—C13—H13B 109.5
C5—C1—H1A 125.8 H13A—C13—H13B 109.5
C2—C1—H1A 125.8 N1—C13—H13C 109.5
Fe1—C1—H1A 125.8 H13A—C13—H13C 109.5
C1—C2—C3 108.0 (4) H13B—C13—H13C 109.5
C1—C2—Fe1 69.7 (2) N1—C14—H14A 109.5
C3—C2—Fe1 69.7 (2) N1—C14—H14B 109.5
C1—C2—H2A 126.0 H14A—C14—H14B 109.5
C3—C2—H2A 126.0 N1—C14—H14C 109.5
Fe1—C2—H2A 126.0 H14A—C14—H14C 109.5
C2—C3—C4 107.6 (4) H14B—C14—H14C 109.5
C2—C3—Fe1 69.7 (2) O1'—Cl2—O4' 104.2 (6)
C4—C3—Fe1 69.8 (2) O1'—Cl2—O3' 125.5 (8)
C2—C3—H3A 126.2 O4'—Cl2—O3' 104.8 (8)
C4—C3—H3A 126.2 O1'—Cl2—O2' 107.3 (5)
Fe1—C3—H3A 126.2 O4'—Cl2—O2' 108.9 (8)
C5—C4—C3 108.0 (4) O3'—Cl2—O2' 105.3 (5)
C5—C4—Fe1 70.3 (2)
C10—Fe1—C1—C5 166.9 (2) C3—Fe1—C6—C10 47.4 (5)
C6—Fe1—C1—C5 124.5 (2) C9—Fe1—C6—C10 −38.0 (3)
C2—Fe1—C1—C5 −119.2 (4) C4—Fe1—C6—C10 −167.7 (5)
C3—Fe1—C1—C5 −81.4 (3) C7—Fe1—C6—C10 −118.1 (3)
C9—Fe1—C1—C5 −161.1 (5) C8—Fe1—C6—C10 −81.3 (3)
C4—Fe1—C1—C5 −37.3 (3) C5—Fe1—C6—C10 162.4 (2)
C7—Fe1—C1—C5 82.1 (3) C10—Fe1—C6—C11 −122.1 (4)
C8—Fe1—C1—C5 48.8 (5) C1—Fe1—C6—C11 −0.2 (3)
C10—Fe1—C1—C2 −73.9 (3) C2—Fe1—C6—C11 −42.3 (4)
C6—Fe1—C1—C2 −116.3 (2) C3—Fe1—C6—C11 −74.7 (5)
C3—Fe1—C1—C2 37.8 (3) C9—Fe1—C6—C11 −160.2 (4)
C9—Fe1—C1—C2 −41.9 (6) C4—Fe1—C6—C11 70.2 (6)
C4—Fe1—C1—C2 81.9 (3) C7—Fe1—C6—C11 119.8 (4)
C7—Fe1—C1—C2 −158.7 (2) C8—Fe1—C6—C11 156.6 (4)
C8—Fe1—C1—C2 168.0 (4) C5—Fe1—C6—C11 40.2 (4)
C5—Fe1—C1—C2 119.2 (4) C10—C6—C7—C8 0.7 (4)
C5—C1—C2—C3 0.7 (4) C11—C6—C7—C8 −174.1 (4)
Fe1—C1—C2—C3 −59.4 (3) Fe1—C6—C7—C8 −58.9 (3)
C5—C1—C2—Fe1 60.2 (3) C10—C6—C7—Fe1 59.6 (2)
C10—Fe1—C2—C1 123.8 (2) C11—C6—C7—Fe1 −115.2 (3)
C6—Fe1—C2—C1 81.1 (3) C10—Fe1—C7—C8 81.5 (3)
C3—Fe1—C2—C1 −119.1 (4) C6—Fe1—C7—C8 120.2 (4)
C9—Fe1—C2—C1 164.5 (2) C1—Fe1—C7—C8 −161.2 (3)
C4—Fe1—C2—C1 −81.0 (3) C2—Fe1—C7—C8 162.5 (4)
C7—Fe1—C2—C1 50.5 (5) C3—Fe1—C7—C8 −39.9 (7)
C8—Fe1—C2—C1 −166.0 (5) C9—Fe1—C7—C8 37.4 (3)
C5—Fe1—C2—C1 −37.5 (2) C4—Fe1—C7—C8 −76.6 (3)
C10—Fe1—C2—C3 −117.1 (3) C5—Fe1—C7—C8 −118.6 (3)
C6—Fe1—C2—C3 −159.7 (2) C10—Fe1—C7—C6 −38.7 (2)
C1—Fe1—C2—C3 119.1 (4) C1—Fe1—C7—C6 78.5 (3)
C9—Fe1—C2—C3 −76.4 (3) C2—Fe1—C7—C6 42.3 (5)
C4—Fe1—C2—C3 38.1 (3) C3—Fe1—C7—C6 −160.1 (5)
C7—Fe1—C2—C3 169.6 (4) C9—Fe1—C7—C6 −82.8 (3)
C8—Fe1—C2—C3 −46.9 (6) C4—Fe1—C7—C6 163.2 (2)
C5—Fe1—C2—C3 81.7 (3) C8—Fe1—C7—C6 −120.2 (4)
C1—C2—C3—C4 −0.3 (4) C5—Fe1—C7—C6 121.2 (2)
Fe1—C2—C3—C4 −59.7 (3) C6—C7—C8—C9 −0.9 (5)
C1—C2—C3—Fe1 59.5 (3) Fe1—C7—C8—C9 −59.1 (3)
C10—Fe1—C3—C2 79.7 (3) C6—C7—C8—Fe1 58.1 (3)
C6—Fe1—C3—C2 45.6 (5) C10—Fe1—C8—C9 37.2 (3)
C1—Fe1—C3—C2 −37.6 (2) C6—Fe1—C8—C9 81.8 (3)
C9—Fe1—C3—C2 122.4 (3) C1—Fe1—C8—C9 165.2 (4)
C4—Fe1—C3—C2 −118.6 (4) C2—Fe1—C8—C9 −39.2 (7)
C7—Fe1—C3—C2 −166.6 (5) C3—Fe1—C8—C9 −74.6 (3)
C8—Fe1—C3—C2 163.1 (3) C4—Fe1—C8—C9 −117.1 (3)
C5—Fe1—C3—C2 −81.1 (3) C7—Fe1—C8—C9 119.3 (4)
C10—Fe1—C3—C4 −161.7 (3) C5—Fe1—C8—C9 −159.5 (3)
C6—Fe1—C3—C4 164.3 (3) C10—Fe1—C8—C7 −82.2 (3)
C1—Fe1—C3—C4 81.0 (3) C6—Fe1—C8—C7 −37.5 (2)
C2—Fe1—C3—C4 118.6 (4) C1—Fe1—C8—C7 45.8 (6)
C9—Fe1—C3—C4 −119.0 (3) C2—Fe1—C8—C7 −158.6 (5)
C7—Fe1—C3—C4 −47.9 (7) C3—Fe1—C8—C7 166.1 (3)
C8—Fe1—C3—C4 −78.3 (3) C9—Fe1—C8—C7 −119.3 (4)
C5—Fe1—C3—C4 37.6 (3) C4—Fe1—C8—C7 123.5 (3)
C2—C3—C4—C5 −0.3 (5) C5—Fe1—C8—C7 81.2 (3)
Fe1—C3—C4—C5 −60.0 (3) C7—C8—C9—C10 0.9 (5)
C2—C3—C4—Fe1 59.7 (3) Fe1—C8—C9—C10 −58.3 (3)
C10—Fe1—C4—C5 160.8 (4) C7—C8—C9—Fe1 59.2 (3)
C6—Fe1—C4—C5 −39.3 (6) C10—Fe1—C9—C8 −120.5 (4)
C1—Fe1—C4—C5 37.2 (3) C6—Fe1—C9—C8 −81.9 (3)
C2—Fe1—C4—C5 81.0 (3) C1—Fe1—C9—C8 −163.0 (5)
C3—Fe1—C4—C5 119.0 (4) C2—Fe1—C9—C8 165.6 (3)
C9—Fe1—C4—C5 −161.7 (3) C3—Fe1—C9—C8 124.1 (3)
C7—Fe1—C4—C5 −77.4 (3) C4—Fe1—C9—C8 81.9 (3)
C8—Fe1—C4—C5 −119.2 (3) C7—Fe1—C9—C8 −37.5 (3)
C10—Fe1—C4—C3 41.8 (6) C5—Fe1—C9—C8 50.0 (6)
C6—Fe1—C4—C3 −158.3 (5) C6—Fe1—C9—C10 38.6 (2)
C1—Fe1—C4—C3 −81.7 (3) C1—Fe1—C9—C10 −42.4 (6)
C2—Fe1—C4—C3 −38.0 (3) C2—Fe1—C9—C10 −73.9 (3)
C9—Fe1—C4—C3 79.3 (3) C3—Fe1—C9—C10 −115.4 (3)
C7—Fe1—C4—C3 163.6 (3) C4—Fe1—C9—C10 −157.5 (3)
C8—Fe1—C4—C3 121.9 (3) C7—Fe1—C9—C10 83.0 (3)
C5—Fe1—C4—C3 −119.0 (4) C8—Fe1—C9—C10 120.5 (4)
C2—C1—C5—C4 −0.9 (5) C5—Fe1—C9—C10 170.5 (4)
Fe1—C1—C5—C4 58.8 (3) C8—C9—C10—C6 −0.4 (5)
C2—C1—C5—Fe1 −59.7 (3) Fe1—C9—C10—C6 −59.5 (3)
C3—C4—C5—C1 0.8 (5) C8—C9—C10—Fe1 59.1 (3)
Fe1—C4—C5—C1 −58.7 (3) C7—C6—C10—C9 −0.1 (4)
C3—C4—C5—Fe1 59.5 (3) C11—C6—C10—C9 174.5 (3)
C10—Fe1—C5—C1 −35.7 (6) Fe1—C6—C10—C9 60.0 (3)
C6—Fe1—C5—C1 −74.1 (3) C7—C6—C10—Fe1 −60.2 (3)
C2—Fe1—C5—C1 37.7 (2) C11—C6—C10—Fe1 114.5 (4)
C3—Fe1—C5—C1 81.7 (3) C6—Fe1—C10—C9 −118.5 (4)
C9—Fe1—C5—C1 163.7 (4) C1—Fe1—C10—C9 164.4 (3)
C4—Fe1—C5—C1 119.7 (4) C2—Fe1—C10—C9 124.0 (3)
C7—Fe1—C5—C1 −117.4 (3) C3—Fe1—C10—C9 82.3 (3)
C8—Fe1—C5—C1 −160.1 (2) C4—Fe1—C10—C9 52.3 (5)
C10—Fe1—C5—C4 −155.3 (5) C7—Fe1—C10—C9 −80.1 (3)
C6—Fe1—C5—C4 166.3 (2) C8—Fe1—C10—C9 −36.7 (3)
C1—Fe1—C5—C4 −119.7 (4) C5—Fe1—C10—C9 −168.7 (5)
C2—Fe1—C5—C4 −82.0 (3) C1—Fe1—C10—C6 −77.1 (3)
C3—Fe1—C5—C4 −38.0 (3) C2—Fe1—C10—C6 −117.5 (2)
C9—Fe1—C5—C4 44.1 (6) C3—Fe1—C10—C6 −159.2 (2)
C7—Fe1—C5—C4 123.0 (3) C9—Fe1—C10—C6 118.5 (4)
C8—Fe1—C5—C4 80.2 (3) C4—Fe1—C10—C6 170.8 (4)
C10—Fe1—C6—C7 118.1 (3) C7—Fe1—C10—C6 38.4 (2)
C1—Fe1—C6—C7 −120.0 (2) C8—Fe1—C10—C6 81.8 (3)
C2—Fe1—C6—C7 −162.0 (2) C5—Fe1—C10—C6 −50.3 (6)
C3—Fe1—C6—C7 165.5 (4) C7—C6—C11—N1 −104.2 (4)
C9—Fe1—C6—C7 80.1 (3) C10—C6—C11—N1 82.1 (5)
C4—Fe1—C6—C7 −49.6 (6) Fe1—C6—C11—N1 169.0 (2)
C8—Fe1—C6—C7 36.8 (3) C13—N1—C11—C6 −66.6 (4)
C5—Fe1—C6—C7 −79.5 (3) C12—N1—C11—C6 54.9 (4)
C1—Fe1—C6—C10 121.9 (3) C14—N1—C11—C6 174.6 (3)
C2—Fe1—C6—C10 79.8 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5405).

References

  1. Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
  2. Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347. [DOI] [PubMed]
  3. Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948. [DOI] [PubMed]
  4. Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011c). Adv. Mater. 23, 5658–5662. [DOI] [PubMed]
  5. Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780–12786. [DOI] [PubMed]
  6. Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011b). Angew. Chem. Int. Ed. 50, 11947–11951. [DOI] [PubMed]
  7. Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.
  8. Pullen, A. E., Faulmann, C., Pokhodnya, P. & Tokumoto, M. (1998). Inorg. Chem. 37, 6714–6720. [DOI] [PubMed]
  9. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812002176/lh5405sup1.cif

e-68-0m197-sup1.cif (34.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002176/lh5405Isup2.hkl

e-68-0m197-Isup2.hkl (170.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES