Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 21;68(Pt 2):m200–m201. doi: 10.1107/S1600536812002218

trans-Tetra­aqua­bis­(isonicotinamide-κN 1)nickel(II) bis­(3-hy­droxy­benzoate) tetra­hydrate

Ibrahim Göker Zaman a, Nagihan Çaylak Delibaş b, Hacali Necefoğlu a, Tuncer Hökelek c,*
PMCID: PMC3274920  PMID: 22346867

Abstract

The asymmetric unit of the title compound, [Ni(C6H6N2O)2(H2O)4](C7H5O3)2·4H2O, contains one-half of the complex cation with the NiII ion located on an inversion center, a 3-hy­droxy­benzoate counter-anion and two uncoordinated water mol­ecules. Four water O atoms in the equatorial plane around the NiII ion [Ni—O = 2.052 (2) and 2.079 (2) Å] form a slightly distorted square-planar arrangement, which is completed up to a distorted octa­hedron by the two N atoms [Ni—N = 2.075 (3) Å] from two isonicotinamide ligands. In the anion, the carboxyl­ate group is twisted from the attached benzene ring by 8.8 (3)°. In the crystal, a three-dimensional hydrogen-bonding network, formed by classical O—H⋯O and N—H⋯O hydrogen bonds, consolidates the crystal packing, which also exhibits π–π inter­actions between the benzene and pyridine rings, with centroid–centroid distances of 3.455 (2) and 3.621 (2) Å, respectively.

Related literature

For general background, see: Bigoli et al. (1972); Krishnamachari (1974). For related structures, see: Hökelek et al. (2009a ,b ,c ,d ,e ); Sertçelik et al. (2009a ,b ).graphic file with name e-68-0m200-scheme1.jpg

Experimental

Crystal data

  • [Ni(C6H6N2O)2(H2O)4](C7H5O3)2·4H2O

  • M r = 721.29

  • Monoclinic, Inline graphic

  • a = 6.6884 (3) Å

  • b = 16.9271 (5) Å

  • c = 13.5543 (4) Å

  • β = 100.186 (3)°

  • V = 1510.37 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 100 K

  • 0.46 × 0.33 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.750, T max = 0.877

  • 13495 measured reflections

  • 3723 independent reflections

  • 3365 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.157

  • S = 1.26

  • 3723 reflections

  • 256 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812002218/cv5237sup1.cif

e-68-0m200-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002218/cv5237Isup2.hkl

e-68-0m200-Isup2.hkl (178.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1i 0.83 (5) 2.20 (5) 3.018 (4) 169 (4)
N2—H22⋯O8ii 0.84 (5) 2.21 (5) 3.012 (4) 159 (5)
O3—H31⋯O7 0.79 (5) 1.91 (5) 2.696 (4) 175 (5)
O5—H51⋯O3ii 0.85 (4) 1.87 (4) 2.716 (3) 177 (5)
O5—H52⋯O1iii 0.84 (5) 1.99 (6) 2.795 (4) 160 (6)
O6—H61⋯O4ii 0.85 (3) 1.86 (3) 2.693 (3) 169 (4)
O6—H62⋯O1iv 0.85 (5) 1.87 (5) 2.685 (4) 159 (5)
O7—H71⋯O7v 0.78 (4) 2.03 (3) 2.795 (4) 167 (6)
O7—H72⋯O2vi 0.85 (5) 1.88 (5) 2.731 (4) 177 (5)
O8—H81⋯O7vii 0.77 (4) 2.10 (4) 2.802 (4) 152 (6)
O8—H82⋯O2 0.83 (4) 1.93 (5) 2.752 (4) 171 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

supplementary crystallographic information

Comment

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound (I) was synthesized and its crystal structure is reported herein.

The asymmetric unit of (I) (Fig. 1) contains one NiII ion on a centre of symmetry, one isonicotinamide (INA) ligand, one 3-hydroxybenzoate (HB) molecule, two coordinated and two uncoordinated water molecules, respectively. The structures of some DENA and/or NA complexes of NiII and Co(II) ions, [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009a), [Ni(C6H6N2O)2(H2O)4](C7H4FO2)2 (Hökelek et al., 2009a), [Ni(C6H6N2O)2(H2O)4](C8H5O3)2.2(H2O) (Hökelek et al., 2009b), [Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009c), [Co(C6H6N2O)2(H2O)4](C8H5O3)2.2(H2O) (Hökelek et al., 2009d), [Co(C6H6N2O)(C9H10NO2)2(H2O)2] (Hökelek et al., 2009e) and [Co(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009b) have also been determined. In (I), INA ligands are monodentate. The four O atoms (O5, O6, and the symmetry-related atoms, O5', O6') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two pyridine N atoms (N1, N1') of the INA ligands at 2.075 (3) Å from the Ni atom in the axial positions (Fig. 1). The average Ni—O bond length is 2.066 (2) Å. The intramolecular O—H···O hydrogen bonds (Table 1) link the uncoordinated water molecules to the HB anion. The dihedral angle between the planar carboxylate group (O1/O2/C1) and the benzene ring A (C2—C7) is 8.77 (27)°, while that between rings A and B (N1/C8—C12) is 1.53 (11)°.

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. π–π Contacts between the benzene and phenyl rings, Cg1···Cg2 and Cg1···Cg2i, [symmetry code: (i) -1 + x, y, z, where Cg1 and Cg2 are centroids of the rings A (C2–C7) and B (N1/C8–C12), respectively] may further stabilize the structure, with centroid-centroid distances of 3.621 (2) and 3.455 (2) Å, respectively.

Experimental

The title compound was prepared by the reaction of NiSO4.6H2O (1.314 g, 5 mmol) in H2O (100 ml) and INA (1.220 g, 10 mmol) in H2O (50 ml) with sodium 3-hydroxybenzoate (1.601 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for four weeks, giving blue single crystals.

Refinement

Atoms H51, H52, H61, H62, H71, H72, H81 and H82 (for H2O), H21 and H22 (for NH2) and H31 (for OH) were located in difference Fourier map and were refined by applying restraints. C-bound H-atoms were positioned geometrically (C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the atom-numbering scheme [symmetry code: (') - x, - y, -z]. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Crystal data

[Ni(C6H6N2O)2(H2O)4](C7H5O3)2·4H2O F(000) = 756
Mr = 721.29 Dx = 1.586 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7580 reflections
a = 6.6884 (3) Å θ = 2.4–28.4°
b = 16.9271 (5) Å µ = 0.73 mm1
c = 13.5543 (4) Å T = 100 K
β = 100.186 (3)° Rod-shaped, blue
V = 1510.37 (9) Å3 0.46 × 0.33 × 0.18 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer 3723 independent reflections
Radiation source: fine-focus sealed tube 3365 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 28.6°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −8→8
Tmin = 0.750, Tmax = 0.877 k = −22→21
13495 measured reflections l = −17→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157 H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.0492P)2 + 5.1781P] where P = (Fo2 + 2Fc2)/3
3723 reflections (Δ/σ)max < 0.001
256 parameters Δρmax = 0.86 e Å3
12 restraints Δρmin = −0.69 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.0000 0.5000 0.00840 (16)
O1 −0.0786 (4) 0.04089 (13) 0.29703 (18) 0.0135 (5)
O2 −0.1778 (4) 0.11616 (14) 0.16276 (17) 0.0145 (5)
O3 −0.0150 (4) 0.39248 (14) 0.27901 (19) 0.0151 (5)
H31 −0.011 (8) 0.428 (3) 0.317 (4) 0.027 (13)*
O4 0.3941 (4) 0.32984 (14) 0.18014 (18) 0.0160 (5)
O5 0.3225 (4) 0.04752 (14) 0.59662 (18) 0.0128 (5)
H51 0.372 (9) 0.068 (3) 0.653 (3) 0.051 (17)*
H52 0.245 (8) 0.014 (3) 0.616 (5) 0.054 (18)*
O6 0.7696 (4) 0.03386 (14) 0.58654 (19) 0.0148 (5)
H61 0.803 (7) 0.0796 (16) 0.609 (3) 0.026 (12)*
H62 0.851 (7) 0.000 (3) 0.618 (4) 0.041 (16)*
O7 0.0025 (4) 0.51961 (15) 0.40009 (19) 0.0168 (5)
H71 −0.018 (9) 0.508 (4) 0.453 (2) 0.050*
H72 −0.101 (6) 0.548 (3) 0.380 (4) 0.047 (17)*
O8 0.0926 (4) 0.06780 (16) 0.04380 (19) 0.0192 (5)
H81 0.196 (5) 0.060 (4) 0.077 (4) 0.050*
H82 0.021 (7) 0.082 (3) 0.085 (3) 0.047 (17)*
N1 0.4858 (4) 0.10763 (15) 0.4259 (2) 0.0098 (5)
N2 0.5148 (5) 0.39569 (17) 0.3228 (2) 0.0140 (6)
H21 0.525 (7) 0.439 (3) 0.296 (3) 0.017 (11)*
H22 0.559 (8) 0.396 (3) 0.385 (4) 0.030 (13)*
C1 −0.1092 (5) 0.10742 (18) 0.2549 (2) 0.0112 (6)
C2 −0.0587 (5) 0.18065 (18) 0.3173 (2) 0.0106 (6)
C3 −0.0642 (5) 0.25416 (18) 0.2706 (2) 0.0110 (6)
H3 −0.1005 0.2580 0.2013 0.013*
C4 −0.0156 (5) 0.32139 (18) 0.3277 (3) 0.0120 (6)
C5 0.0358 (5) 0.31639 (19) 0.4314 (3) 0.0130 (6)
H5 0.0684 0.3619 0.4694 0.016*
C6 0.0386 (5) 0.2433 (2) 0.4783 (3) 0.0137 (6)
H6 0.0707 0.2399 0.5478 0.016*
C7 −0.0068 (5) 0.17514 (19) 0.4214 (2) 0.0121 (6)
H7 −0.0026 0.1261 0.4526 0.015*
C8 0.4370 (5) 0.11290 (18) 0.3253 (2) 0.0113 (6)
H8 0.4102 0.0666 0.2884 0.014*
C9 0.4250 (5) 0.18391 (18) 0.2748 (2) 0.0119 (6)
H9 0.3897 0.1851 0.2053 0.014*
C10 0.4660 (5) 0.25372 (18) 0.3287 (2) 0.0106 (6)
C11 0.5176 (5) 0.24858 (18) 0.4322 (2) 0.0124 (6)
H11 0.5467 0.2940 0.4706 0.015*
C12 0.5253 (5) 0.17508 (19) 0.4776 (2) 0.0118 (6)
H12 0.5594 0.1724 0.5471 0.014*
C13 0.4552 (5) 0.33050 (18) 0.2717 (2) 0.0115 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0102 (3) 0.0075 (3) 0.0072 (3) −0.00025 (19) 0.00071 (19) 0.00018 (19)
O1 0.0146 (11) 0.0103 (10) 0.0151 (12) 0.0006 (8) 0.0015 (9) 0.0001 (8)
O2 0.0171 (12) 0.0151 (11) 0.0105 (11) −0.0004 (9) 0.0007 (9) −0.0006 (9)
O3 0.0218 (13) 0.0101 (11) 0.0132 (12) 0.0002 (9) 0.0022 (10) 0.0006 (9)
O4 0.0246 (13) 0.0122 (11) 0.0107 (11) 0.0019 (9) 0.0016 (10) 0.0017 (8)
O5 0.0145 (12) 0.0136 (11) 0.0113 (11) −0.0003 (8) 0.0049 (9) −0.0006 (9)
O6 0.0155 (12) 0.0098 (11) 0.0162 (12) 0.0000 (9) −0.0052 (9) −0.0013 (9)
O7 0.0199 (13) 0.0139 (11) 0.0155 (12) 0.0031 (9) 0.0004 (10) 0.0000 (9)
O8 0.0202 (13) 0.0214 (13) 0.0173 (13) 0.0031 (10) 0.0064 (10) 0.0001 (10)
N1 0.0084 (12) 0.0117 (12) 0.0096 (12) 0.0005 (9) 0.0025 (10) 0.0005 (9)
N2 0.0199 (15) 0.0109 (13) 0.0105 (14) −0.0009 (10) 0.0007 (11) 0.0027 (10)
C1 0.0072 (13) 0.0127 (14) 0.0142 (15) 0.0003 (10) 0.0030 (11) −0.0011 (11)
C2 0.0079 (14) 0.0115 (14) 0.0126 (15) 0.0008 (10) 0.0022 (11) −0.0012 (11)
C3 0.0095 (14) 0.0147 (14) 0.0088 (14) 0.0014 (11) 0.0015 (11) 0.0008 (11)
C4 0.0094 (14) 0.0108 (14) 0.0160 (16) 0.0009 (11) 0.0027 (12) 0.0020 (12)
C5 0.0117 (14) 0.0129 (14) 0.0141 (16) 0.0003 (11) 0.0019 (12) −0.0030 (11)
C6 0.0133 (15) 0.0172 (15) 0.0101 (15) 0.0010 (11) 0.0010 (12) 0.0001 (12)
C7 0.0129 (15) 0.0116 (14) 0.0124 (15) 0.0017 (11) 0.0034 (12) 0.0020 (11)
C8 0.0107 (14) 0.0113 (14) 0.0118 (15) −0.0002 (11) 0.0019 (11) −0.0009 (11)
C9 0.0120 (14) 0.0132 (14) 0.0105 (15) 0.0002 (11) 0.0016 (12) 0.0006 (11)
C10 0.0092 (14) 0.0102 (13) 0.0125 (15) 0.0011 (10) 0.0024 (11) 0.0018 (11)
C11 0.0143 (15) 0.0100 (14) 0.0129 (15) 0.0003 (11) 0.0026 (12) −0.0011 (11)
C12 0.0107 (14) 0.0135 (14) 0.0115 (15) 0.0007 (11) 0.0028 (11) −0.0003 (11)
C13 0.0100 (14) 0.0119 (14) 0.0133 (15) 0.0022 (11) 0.0038 (12) 0.0020 (11)

Geometric parameters (Å, °)

Ni1—O5 2.079 (2) N2—H21 0.83 (5)
Ni1—O5i 2.079 (2) N2—H22 0.84 (5)
Ni1—O6 2.052 (2) C2—C1 1.505 (4)
Ni1—O6i 2.052 (2) C2—C3 1.394 (4)
Ni1—N1 2.075 (3) C2—C7 1.395 (4)
Ni1—N1i 2.075 (3) C3—H3 0.9300
O1—C1 1.263 (4) C4—C3 1.383 (4)
O2—C1 1.260 (4) C5—C4 1.389 (5)
O3—C4 1.373 (4) C5—C6 1.390 (5)
O3—H31 0.79 (5) C5—H5 0.9300
O4—C13 1.236 (4) C6—H6 0.9300
O5—H51 0.85 (2) C7—C6 1.391 (5)
O5—H52 0.85 (2) C7—H7 0.9300
O6—H61 0.85 (2) C8—H8 0.9300
O6—H62 0.85 (2) C9—C8 1.378 (4)
O7—H71 0.784 (18) C9—C10 1.391 (4)
O7—H72 0.85 (2) C9—H9 0.9300
O8—H81 0.769 (18) C10—C11 1.386 (5)
O8—H82 0.83 (2) C10—C13 1.507 (4)
N1—C8 1.347 (4) C11—H11 0.9300
N1—C12 1.341 (4) C12—C11 1.385 (4)
N2—C13 1.326 (4) C12—H12 0.9300
O5—Ni1—O5i 180.00 (9) C7—C2—C1 120.3 (3)
O6—Ni1—O5 94.23 (10) C2—C3—H3 120.1
O6i—Ni1—O5 85.77 (10) C4—C3—C2 119.7 (3)
O6—Ni1—O5i 85.77 (10) C4—C3—H3 120.1
O6i—Ni1—O5i 94.23 (10) O3—C4—C3 118.2 (3)
O6i—Ni1—O6 180.0 O3—C4—C5 121.2 (3)
O6—Ni1—N1 89.53 (10) C3—C4—C5 120.5 (3)
O6i—Ni1—N1 90.47 (10) C4—C5—C6 119.9 (3)
O6—Ni1—N1i 90.47 (10) C4—C5—H5 120.1
O6i—Ni1—N1i 89.53 (10) C6—C5—H5 120.1
N1—Ni1—O5 89.02 (10) C5—C6—C7 120.1 (3)
N1i—Ni1—O5 90.98 (10) C5—C6—H6 120.0
N1—Ni1—O5i 90.98 (10) C7—C6—H6 120.0
N1i—Ni1—O5i 89.02 (10) C2—C7—H7 120.1
N1i—Ni1—N1 180.0 C6—C7—C2 119.8 (3)
C4—O3—H31 111 (4) C6—C7—H7 120.1
Ni1—O5—H51 123 (4) N1—C8—C9 122.8 (3)
Ni1—O5—H52 113 (4) N1—C8—H8 118.6
H52—O5—H51 99 (6) C9—C8—H8 118.6
Ni1—O6—H61 128 (3) C8—C9—C10 119.4 (3)
Ni1—O6—H62 121 (4) C8—C9—H9 120.3
H61—O6—H62 110 (5) C10—C9—H9 120.3
H72—O7—H71 100 (4) C9—C10—C13 118.5 (3)
H81—O8—H82 103 (4) C11—C10—C9 117.9 (3)
C8—N1—Ni1 122.0 (2) C11—C10—C13 123.6 (3)
C12—N1—Ni1 120.4 (2) C10—C11—H11 120.4
C12—N1—C8 117.6 (3) C12—C11—C10 119.3 (3)
C13—N2—H21 123 (3) C12—C11—H11 120.4
C13—N2—H22 123 (3) N1—C12—C11 122.9 (3)
H21—N2—H22 113 (4) N1—C12—H12 118.5
O1—C1—C2 118.5 (3) C11—C12—H12 118.5
O2—C1—O1 123.7 (3) O4—C13—N2 123.2 (3)
O2—C1—C2 117.8 (3) O4—C13—C10 119.0 (3)
C3—C2—C1 119.6 (3) N2—C13—C10 117.9 (3)
C3—C2—C7 120.1 (3)
O5—Ni1—N1—C8 −131.1 (3) C1—C2—C7—C6 −179.7 (3)
O5i—Ni1—N1—C8 48.9 (3) C3—C2—C7—C6 0.2 (5)
O5—Ni1—N1—C12 48.7 (2) O3—C4—C3—C2 177.5 (3)
O5i—Ni1—N1—C12 −131.3 (2) C5—C4—C3—C2 −0.9 (5)
O6—Ni1—N1—C8 134.6 (3) C6—C5—C4—O3 −178.4 (3)
O6i—Ni1—N1—C8 −45.4 (3) C6—C5—C4—C3 0.0 (5)
O6—Ni1—N1—C12 −45.5 (2) C4—C5—C6—C7 1.1 (5)
O6i—Ni1—N1—C12 134.5 (2) C2—C7—C6—C5 −1.2 (5)
Ni1—N1—C8—C9 179.4 (2) C10—C9—C8—N1 0.5 (5)
C12—N1—C8—C9 −0.5 (5) C8—C9—C10—C11 −0.1 (5)
Ni1—N1—C12—C11 −179.8 (2) C8—C9—C10—C13 179.0 (3)
C8—N1—C12—C11 0.1 (5) C9—C10—C11—C12 −0.3 (5)
C3—C2—C1—O1 171.2 (3) C13—C10—C11—C12 −179.4 (3)
C3—C2—C1—O2 −8.0 (4) C9—C10—C13—O4 6.0 (5)
C7—C2—C1—O1 −8.9 (5) C9—C10—C13—N2 −173.2 (3)
C7—C2—C1—O2 171.9 (3) C11—C10—C13—O4 −175.0 (3)
C1—C2—C3—C4 −179.3 (3) C11—C10—C13—N2 5.8 (5)
C7—C2—C3—C4 0.8 (5) N1—C12—C11—C10 0.3 (5)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H21···O1ii 0.83 (5) 2.20 (5) 3.018 (4) 169 (4)
N2—H22···O8iii 0.84 (5) 2.21 (5) 3.012 (4) 159 (5)
O3—H31···O7 0.79 (5) 1.91 (5) 2.696 (4) 175 (5)
O5—H51···O3iii 0.85 (4) 1.87 (4) 2.716 (3) 177 (5)
O5—H52···O1iv 0.84 (5) 1.99 (6) 2.795 (4) 160 (6)
O6—H61···O4iii 0.85 (3) 1.86 (3) 2.693 (3) 169 (4)
O6—H62···O1i 0.85 (5) 1.87 (5) 2.685 (4) 159 (5)
O7—H71···O7v 0.78 (4) 2.03 (3) 2.795 (4) 167 (6)
O7—H72···O2vi 0.85 (5) 1.88 (5) 2.731 (4) 177 (5)
O8—H81···O7vii 0.77 (4) 2.10 (4) 2.802 (4) 152 (6)
O8—H82···O2 0.83 (4) 1.93 (5) 2.752 (4) 171 (4)

Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x, −y, −z+1; (i) −x+1, −y, −z+1; (v) −x, −y+1, −z+1; (vi) −x−1/2, y+1/2, −z+1/2; (vii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5237).

References

  1. Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009e). Acta Cryst. E65, m627–m628. [DOI] [PMC free article] [PubMed]
  7. Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1330–m1331. [DOI] [PMC free article] [PubMed]
  8. Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1101–m1102. [DOI] [PMC free article] [PubMed]
  9. Hökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m768–m769. [DOI] [PMC free article] [PubMed]
  10. Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1130–m1131. [DOI] [PMC free article] [PubMed]
  11. Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. [DOI] [PubMed]
  12. Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m326–m327. [DOI] [PMC free article] [PubMed]
  13. Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m389–m390. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812002218/cv5237sup1.cif

e-68-0m200-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002218/cv5237Isup2.hkl

e-68-0m200-Isup2.hkl (178.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES