Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 31;68(Pt 2):m208. doi: 10.1107/S1600536812002528

Trichlorido{2-dimeth­oxy­methyl-4-methyl-6-[(quinolin-8-yl)imino­meth­yl]phenolato-κ3 N,N′,O 1}tin(IV)

Keisuke Kawamoto a, Takashi Shibahara a,*
PMCID: PMC3274925  PMID: 22346872

Abstract

In the title compound, [Sn(C20H19N2O3)Cl3], the SnIV ion is surrounded by a tridentate monoanionic Schiff base and by three meridional chloride ions in a six-coordinated distorted octa­hedral geometry. The Sn—Cl bond [2.366 (2) Å] trans to nitro­gen is shorter than the others [2.438 (2) and 2.414 (2) Å]. The N—Sn—N angle [76.19 (11)°] is smaller than the O—Sn—N angle [87.89 (10)°] in the Schiff base ligand. No classical inter­molecular hydrogen-bonding inter­actions are observed. The crystal packing exhibits π–π stacking inter­actions, with a distance of 3.595 (2) Å between the centroids of the phenolate ring and the benzene ring of the quinoline group of inversion-related mol­ecules.

Related literature

For a related structure, see: Takano & Shibahara (2008).graphic file with name e-68-0m208-scheme1.jpg

Experimental

Crystal data

  • [Sn(C20H19N2O3)Cl3]

  • M r = 560.43

  • Triclinic, Inline graphic

  • a = 7.213 (5) Å

  • b = 11.786 (8) Å

  • c = 13.197 (8) Å

  • α = 72.300 (13)°

  • β = 79.10 (3)°

  • γ = 89.89 (3)°

  • V = 1047.5 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 93 K

  • 0.23 × 0.22 × 0.11 mm

Data collection

  • Rigaku Mercury70 diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998) T min = 0.779, T max = 0.836

  • 15965 measured reflections

  • 5989 independent reflections

  • 5512 reflections with F 2 > 2σ(F 2)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.101

  • S = 1.04

  • 5989 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 1.51 e Å−3

  • Δρmin = −1.24 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure .

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002528/pk2385sup1.cif

e-68-0m208-sup1.cif (32.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002528/pk2385Isup2.hkl

e-68-0m208-Isup2.hkl (293.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Ms Kanako Ichikawa for the preparation of the title compound and the Japan Private School Promotion Foundation for financial support.

supplementary crystallographic information

Comment

The title compound is a tin(IV) complex with a Schiff base ligand, which was obtained by the condensation reaction of 8-aminoquinoline with 2-hydroxy-5-methylisophthalaldehyde. The synthetic method of the complex was reported, and the 1H NMR spectrum in DMSO-d6 revealed that the formyl group of the aldehyde changed to the acetal group on coordination to tin(IV) (Takano & Shibahara, 2008).

In this paper, we report the X-ray analysis of the title compound using a different synthetic method from the previous one: 1) acetylacetone tin(IV) dichloride salt, SnIVCl2(C5H7O2)2, was used in place of SnCl4.5H2O. 2) the new method does not require heating. 3) tetrabutyl ammonium chloride was added to supply chloride ion. The new method gives orange block crystals of the title compound by slow ligand exchange reaction from acetylacetonate to Schiff base, while the previous method gives yellow powder by heating at 60°C for 2~3 h. The 1H NMR spectrum of the crystals is identical to that of the yellow powder.

In the X-ray structure, the tin(IV) complex has a six-coordinated distorted octahedral geometry coordinated by a tridentate monoanionic Schiff base and by three meridional chloride ions (Fig. 1). The difference in trans influence between imino N and Cl induces different Sn1—Cl distances [Sn1—Cl1, 2.438 (2) Å; Sn1—Cl2, 2.414 (2) Å; Sn1—Cl3, 2.366 (2) Å]. The N1—Sn1—N2 angle [76.20 (11)°] is smaller than the O1—Sn—N1 angle [87.89 (10)°] in the Schiff base ligand. Although no intermolecular interaction via hydrogen bonding was observed in the crystal packing, the crystal packing exhibits π-π stacking interactions with a distance of 3.595 (2) Å between the centroids of aromatic rings (Fig. 2).

Experimental

To a solution of acetylacetone tin(IV) dichloride salt, SnIVCl2(C5H7O2)2 (50.24 mg, 0.13 mmol) in methanol (60 ml) was added tetrabutyl ammonium chloride (36.72 mg, 0.13 mmol). To the methanol solution was added 8-aminoquinoline (19.09 mg, 0.13 mmol) and 2-hydroxy-5-methylisophthalaldehyde (21.58 mg, 0.13 mmol). Orange block single crystals of title compound suitable for X-ray analysis were obtained after leaving the solution to stand for three weeks at room temperature in the dark.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H 0.98–1.06 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq (C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title molecule showing the intermolecular π-π stacking interactions.

Crystal data

[Sn(C20H19N2O3)Cl3] Z = 2
Mr = 560.43 F(000) = 556.00
Triclinic, P1 Dx = 1.777 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71070 Å
a = 7.213 (5) Å Cell parameters from 3411 reflections
b = 11.786 (8) Å θ = 3.0–30.0°
c = 13.197 (8) Å µ = 1.63 mm1
α = 72.300 (13)° T = 93 K
β = 79.10 (3)° Block, orange
γ = 89.89 (3)° 0.23 × 0.22 × 0.11 mm
V = 1047.5 (13) Å3

Data collection

Rigaku Mercury70 diffractometer 5512 reflections with F2 > 2σ(F2)
Detector resolution: 7.314 pixels mm-1 Rint = 0.020
ω scans θmax = 30.1°
Absorption correction: multi-scan (REQAB; Rigaku, 1998) h = −10→10
Tmin = 0.779, Tmax = 0.836 k = −16→16
15965 measured reflections l = −18→18
5989 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0376P)2 + 3.612P] where P = (Fo2 + 2Fc2)/3
5989 reflections (Δ/σ)max = 0.001
292 parameters Δρmax = 1.51 e Å3
0 restraints Δρmin = −1.24 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn(1) 0.07267 (3) 0.182356 (18) 0.625513 (16) 0.02282 (7)
Cl(1) −0.16518 (12) 0.22042 (7) 0.51208 (7) 0.03006 (17)
Cl(2) 0.32132 (14) 0.15729 (8) 0.72856 (8) 0.03575 (19)
Cl(3) 0.00261 (13) −0.02600 (8) 0.67936 (7) 0.03285 (18)
O(1) −0.1098 (4) 0.2240 (2) 0.74212 (19) 0.0276 (5)
O(2) −0.4558 (3) 0.21297 (19) 1.02744 (18) 0.0231 (5)
O(3) −0.2056 (4) 0.1011 (2) 0.97814 (19) 0.0246 (5)
N(1) 0.1674 (4) 0.3725 (3) 0.5581 (2) 0.0215 (5)
N(2) 0.2821 (4) 0.1915 (3) 0.4789 (3) 0.0240 (5)
C(1) −0.1026 (5) 0.3198 (3) 0.7750 (3) 0.0210 (6)
C(2) −0.2156 (5) 0.3123 (3) 0.8775 (3) 0.0206 (6)
C(3) −0.2263 (5) 0.4110 (3) 0.9135 (3) 0.0223 (6)
C(4) −0.1290 (5) 0.5215 (3) 0.8520 (3) 0.0234 (6)
C(5) −0.0184 (5) 0.5282 (3) 0.7533 (3) 0.0232 (6)
C(6) 0.0000 (5) 0.4288 (3) 0.7132 (3) 0.0215 (6)
C(7) 0.1235 (5) 0.4495 (3) 0.6099 (3) 0.0227 (6)
C(8) 0.2986 (5) 0.4024 (3) 0.4576 (3) 0.0223 (6)
C(9) 0.3711 (5) 0.5165 (3) 0.3962 (3) 0.0259 (6)
C(10) 0.4961 (5) 0.5361 (4) 0.2956 (3) 0.0278 (7)
C(11) 0.5496 (5) 0.4427 (4) 0.2568 (3) 0.0290 (7)
C(12) 0.4818 (5) 0.3242 (4) 0.3181 (3) 0.0264 (7)
C(13) 0.5331 (5) 0.2226 (4) 0.2848 (3) 0.0318 (8)
C(14) 0.4610 (6) 0.1114 (4) 0.3480 (3) 0.0322 (8)
C(15) 0.3317 (5) 0.0988 (3) 0.4450 (3) 0.0284 (7)
C(16) 0.3541 (5) 0.3044 (3) 0.4182 (3) 0.0229 (6)
C(21) −0.3243 (5) 0.1943 (3) 0.9417 (3) 0.0209 (6)
C(22) −0.5839 (5) 0.1104 (3) 1.0820 (3) 0.0277 (7)
C(23) −0.0791 (6) 0.1254 (4) 1.0415 (4) 0.0346 (8)
C(41) −0.1489 (6) 0.6271 (3) 0.8946 (3) 0.0311 (7)
H(1) −0.3956 0.1656 0.8899 0.0251*
H(3) −0.3008 0.4055 0.9811 0.0267*
H(5) 0.0457 0.5973 0.7146 0.0278*
H(7) 0.1751 0.5318 0.5771 0.0273*
H(9) 0.3360 0.5838 0.4169 0.0310*
H(10) 0.5339 0.6126 0.2570 0.0333*
H(11) 0.6299 0.4556 0.1892 0.0348*
H(13) 0.6057 0.2385 0.2185 0.0382*
H(14) 0.4973 0.0435 0.3280 0.0387*
H(15) 0.2692 0.0223 0.4854 0.0340*
H(22A) −0.5124 0.0414 1.1115 0.0415*
H(22B) −0.6531 0.0938 1.0304 0.0415*
H(22C) −0.6736 0.1259 1.1413 0.0415*
H(23A) −0.1522 0.1403 1.1063 0.0520*
H(23B) 0.0041 0.1959 0.9983 0.0520*
H(23C) −0.0026 0.0567 1.0634 0.0520*
H(41A) −0.2017 0.6923 0.8442 0.0467*
H(41B) −0.0244 0.6538 0.9012 0.0467*
H(41C) −0.2335 0.6039 0.9659 0.0467*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn(1) 0.02655 (12) 0.01881 (11) 0.02224 (11) 0.00370 (8) 0.00058 (8) −0.00837 (8)
Cl(1) 0.0309 (4) 0.0267 (4) 0.0341 (4) 0.0029 (3) −0.0042 (3) −0.0130 (3)
Cl(2) 0.0421 (5) 0.0302 (4) 0.0358 (5) 0.0084 (4) −0.0096 (4) −0.0102 (4)
Cl(3) 0.0382 (5) 0.0279 (4) 0.0325 (4) 0.0000 (4) −0.0018 (4) −0.0125 (3)
O(1) 0.0318 (12) 0.0210 (11) 0.0291 (12) −0.0022 (9) 0.0083 (10) −0.0150 (9)
O(2) 0.0215 (11) 0.0200 (10) 0.0275 (11) −0.0003 (8) 0.0030 (9) −0.0116 (9)
O(3) 0.0255 (11) 0.0207 (10) 0.0301 (12) 0.0047 (9) −0.0053 (9) −0.0116 (9)
N(1) 0.0207 (12) 0.0181 (11) 0.0227 (12) 0.0018 (9) 0.0004 (10) −0.0046 (9)
N(2) 0.0248 (13) 0.0240 (13) 0.0233 (12) 0.0056 (10) −0.0009 (10) −0.0098 (10)
C(1) 0.0198 (13) 0.0189 (13) 0.0258 (14) 0.0030 (11) −0.0024 (11) −0.0104 (11)
C(2) 0.0210 (14) 0.0201 (13) 0.0220 (13) 0.0040 (11) −0.0030 (11) −0.0091 (11)
C(3) 0.0210 (14) 0.0227 (14) 0.0237 (14) 0.0036 (11) −0.0019 (11) −0.0095 (11)
C(4) 0.0222 (14) 0.0196 (13) 0.0320 (16) 0.0049 (11) −0.0053 (12) −0.0133 (12)
C(5) 0.0217 (14) 0.0176 (13) 0.0306 (15) 0.0023 (11) −0.0031 (12) −0.0093 (12)
C(6) 0.0199 (14) 0.0184 (13) 0.0270 (14) 0.0046 (11) −0.0022 (11) −0.0095 (11)
C(7) 0.0199 (14) 0.0202 (14) 0.0264 (14) 0.0037 (11) −0.0030 (11) −0.0056 (11)
C(8) 0.0200 (14) 0.0228 (14) 0.0224 (14) 0.0051 (11) −0.0017 (11) −0.0060 (11)
C(9) 0.0220 (15) 0.0271 (16) 0.0264 (15) 0.0040 (12) −0.0025 (12) −0.0067 (12)
C(10) 0.0209 (15) 0.0316 (17) 0.0257 (15) −0.0004 (13) −0.0032 (12) −0.0022 (13)
C(11) 0.0212 (15) 0.0399 (19) 0.0225 (15) 0.0030 (13) −0.0015 (12) −0.0065 (13)
C(12) 0.0220 (15) 0.0369 (17) 0.0211 (14) 0.0052 (13) −0.0037 (11) −0.0104 (13)
C(13) 0.0283 (17) 0.044 (2) 0.0242 (15) 0.0100 (15) −0.0007 (13) −0.0153 (15)
C(14) 0.0365 (19) 0.0353 (18) 0.0289 (17) 0.0123 (15) −0.0043 (14) −0.0172 (14)
C(15) 0.0320 (17) 0.0274 (16) 0.0269 (15) 0.0093 (13) −0.0035 (13) −0.0117 (13)
C(16) 0.0195 (14) 0.0278 (15) 0.0211 (13) 0.0076 (12) −0.0030 (11) −0.0076 (12)
C(21) 0.0188 (13) 0.0199 (13) 0.0245 (14) 0.0041 (11) −0.0013 (11) −0.0093 (11)
C(22) 0.0238 (15) 0.0247 (15) 0.0335 (17) −0.0019 (12) 0.0049 (13) −0.0137 (13)
C(23) 0.0349 (19) 0.0319 (18) 0.047 (2) 0.0103 (15) −0.0187 (16) −0.0195 (16)
C(41) 0.0338 (18) 0.0229 (15) 0.0400 (19) 0.0008 (13) −0.0019 (15) −0.0178 (14)

Geometric parameters (Å, °)

Sn1—Cl1 2.4382 (16) C9—C10 1.411 (5)
Sn1—Cl2 2.4143 (17) C10—C11 1.374 (6)
Sn1—Cl3 2.3660 (19) C11—C12 1.417 (5)
Sn1—O1 2.008 (3) C12—C13 1.422 (6)
Sn1—N1 2.201 (3) C12—C16 1.416 (5)
Sn1—N2 2.192 (3) C13—C14 1.363 (5)
O1—C1 1.332 (5) C14—C15 1.402 (5)
O2—C21 1.404 (4) C3—H3 0.934
O2—C22 1.434 (4) C5—H5 0.893
O3—C21 1.415 (4) C7—H7 0.976
O3—C23 1.432 (6) C9—H9 0.934
N1—C7 1.297 (5) C10—H10 0.903
N1—C8 1.421 (4) C11—H11 0.937
N2—C15 1.326 (6) C13—H13 0.895
N2—C16 1.370 (4) C14—H14 0.938
C1—C2 1.418 (5) C15—H15 0.958
C1—C6 1.415 (4) C21—H1 1.059
C2—C3 1.381 (5) C22—H22A 0.980
C2—C21 1.517 (4) C22—H22B 0.980
C3—C4 1.412 (4) C22—H22C 0.980
C4—C5 1.373 (5) C23—H23A 0.980
C4—C41 1.511 (6) C23—H23B 0.980
C5—C6 1.421 (6) C23—H23C 0.980
C6—C7 1.432 (5) C41—H41A 0.980
C8—C9 1.385 (5) C41—H41B 0.980
C8—C16 1.431 (6) C41—H41C 0.980
Sn1···C6 3.443 (4) C11···H5vii 3.0309
Cl3···C15 3.440 (4) C11···H7vii 3.2990
O1···O3 2.954 (4) C12···H5vii 3.4451
O1···C7 3.004 (4) C12···H41Avi 3.2550
O1···C21 2.712 (4) C13···H22Cviii 3.0812
O2···C3 2.718 (4) C13···H23Aviii 3.3162
O2···C23 2.923 (5) C13···H41Avi 3.1795
O3···C1 3.072 (4) C14···H15ix 3.2562
O3···C3 3.499 (5) C14···H22Aviii 3.4349
O3···C22 2.830 (5) C14···H22Cviii 3.0215
N1···C1 3.032 (5) C15···H14ix 3.4122
N2···C13 2.767 (5) C15···H15ix 3.3697
C1···C4 2.847 (6) C21···H10vi 3.4918
C2···C5 2.790 (5) C21···H22Aiv 3.3328
C2···C23 2.899 (5) C21···H22Biv 3.3030
C3···C6 2.780 (5) C22···H1iv 3.1603
C3···C23 3.538 (5) C22···H13ii 3.1609
C7···C9 2.917 (5) C22···H14ii 3.2658
C8···C11 2.820 (5) C22···H22Aiv 3.5069
C9···C12 2.818 (6) C22···H22Biv 3.4792
C10···C16 2.797 (5) C22···H23Bxiii 3.4086
C12···C15 2.767 (5) C22···H23Cxiii 3.1561
C14···C16 2.763 (6) C22···H41Aiii 3.0891
C22···C23 3.575 (6) C22···H41Ciii 3.5326
Cl3···C15i 3.406 (5) C23···H13ii 3.5034
O2···C13ii 3.418 (6) C23···H22Bx 3.0754
O2···C41iii 3.576 (5) C23···H22Cx 3.4270
O3···C22iv 3.289 (5) C23···H23Cv 2.8923
O3···C23v 3.407 (5) C23···H41Bxii 3.0520
N1···C7vi 3.554 (5) C41···H22Ciii 3.1160
C1···C9vi 3.402 (5) C41···H23Axii 3.4958
C1···C10vi 3.439 (5) C41···H23Bxii 3.1304
C2···C10vi 3.428 (5) H1···Cl2xiii 3.2377
C3···C10vi 3.573 (6) H1···C22iv 3.1603
C4···C11vi 3.566 (6) H1···H10vi 3.0369
C5···C11vii 3.372 (6) H1···H22Aiv 2.5356
C6···C8vi 3.574 (5) H1···H22Biv 2.9587
C6···C9vi 3.249 (6) H3···H11ii 2.9332
C7···N1vi 3.554 (5) H3···H13ii 3.0994
C7···C7vi 3.585 (6) H3···H41Bxii 3.0192
C7···C10vii 3.246 (6) H3···H41Ciii 3.2938
C8···C6vi 3.574 (5) H5···Cl1vi 3.0708
C9···C1vi 3.402 (5) H5···C11vii 3.0309
C9···C6vi 3.249 (6) H5···C12vii 3.4451
C9···C9vii 3.519 (6) H5···H11vii 2.8481
C10···C1vi 3.439 (5) H5···H13vii 3.5693
C10···C2vi 3.428 (5) H7···Cl1vi 2.8031
C10···C3vi 3.573 (6) H7···N1vi 3.3148
C10···C7vii 3.246 (6) H7···C7vi 3.5286
C11···C4vi 3.566 (6) H7···C8vi 3.5846
C11···C5vii 3.372 (6) H7···C9vii 3.3861
C13···O2viii 3.418 (6) H7···C10vii 3.1259
C13···C22viii 3.555 (7) H7···C11vii 3.2990
C14···C22viii 3.589 (6) H7···H10vii 3.3998
C15···Cl3i 3.406 (5) H9···Cl1vi 2.9307
C15···C15ix 3.561 (6) H9···O1vi 3.2541
C22···O3iv 3.289 (5) H9···C1vi 3.2249
C22···C13ii 3.555 (7) H9···C6vi 3.2517
C22···C14ii 3.589 (6) H9···C7vi 3.4348
C23···O3v 3.407 (5) H9···C8vii 3.3950
C23···C23v 3.567 (7) H9···C9vii 3.4819
C41···O2iii 3.576 (5) H10···Cl2vii 2.9803
Sn1···H15 3.1788 H10···N1vii 3.5888
Cl3···H15 2.7979 H10···C1vi 3.2819
O1···H1 2.4890 H10···C2vi 3.1272
O1···H23B 3.5467 H10···C3vi 3.5113
O2···H3 2.3835 H10···C6vii 3.4747
O2···H23A 2.6315 H10···C7vii 3.2530
O2···H23B 3.2795 H10···C21vi 3.4918
O3···H22A 2.5036 H10···H1vi 3.0369
O3···H22B 3.1662 H10···H7vii 3.3998
N1···H9 2.7348 H11···C4vii 3.5357
N2···H14 3.2179 H11···C5vii 3.0592
C1···H1 2.6825 H11···H3viii 2.9332
C1···H3 3.2639 H11···H5vii 2.8481
C1···H5 3.2529 H11···H41Bvii 3.2889
C1···H7 3.3394 H11···H41Cviii 2.9130
C1···H23B 3.1049 H13···O2viii 2.7444
C2···H23A 3.1988 H13···C22viii 3.1609
C2···H23B 2.5593 H13···C23viii 3.5034
C3···H1 3.2644 H13···H3viii 3.0994
C3···H5 3.1823 H13···H5vii 3.5693
C3···H23A 3.5367 H13···H22Aviii 3.2521
C3···H23B 3.0662 H13···H22Cviii 2.9099
C3···H41A 3.1554 H13···H23Aviii 2.5762
C3···H41B 3.1593 H13···H41Avi 3.2147
C3···H41C 2.5674 H13···H41Bvii 3.1965
C5···H3 3.2142 H14···Cl2ix 2.9259
C5···H7 2.4637 H14···Cl3ix 3.5973
C5···H41A 2.7804 H14···C15ix 3.4122
C5···H41B 2.7800 H14···C22viii 3.2658
C5···H41C 3.3087 H14···H15ix 3.1470
C7···H5 2.5358 H14···H22Aviii 2.8791
C7···H9 2.7237 H14···H22Cviii 2.8675
C8···H7 2.5553 H14···H23Aviii 3.3818
C8···H10 3.2184 H15···Cl1i 2.9475
C9···H7 2.5905 H15···Cl3i 3.1825
C9···H11 3.2749 H15···C14ix 3.2562
C11···H9 3.2400 H15···C15ix 3.3697
C11···H13 2.6214 H15···H14ix 3.1470
C12···H10 3.2507 H15···H15ix 3.4444
C12···H14 3.2738 H22A···Cl2v 3.1499
C13···H11 2.6807 H22A···O3iv 3.2379
C13···H15 3.2430 H22A···C14ii 3.4349
C15···H13 3.2149 H22A···C21iv 3.3328
C16···H9 3.2896 H22A···C22iv 3.5069
C16···H11 3.2760 H22A···H1iv 2.5356
C16···H13 3.2054 H22A···H13ii 3.2521
C16···H15 3.1978 H22A···H14ii 2.8791
C21···H3 2.7048 H22A···H22Aiv 3.3440
C21···H22A 2.5520 H22A···H22Biv 2.9030
C21···H22B 2.5528 H22B···O3iv 2.5561
C21···H22C 3.1846 H22B···C21iv 3.3030
C21···H23A 2.6156 H22B···C22iv 3.4792
C21···H23B 2.6165 H22B···C23xiii 3.0754
C21···H23C 3.2261 H22B···H1iv 2.9587
C22···H1 2.5279 H22B···H22Aiv 2.9030
C22···H23A 3.2207 H22B···H22Biv 3.2856
C23···H1 3.2540 H22B···H23Bxiii 2.7957
C23···H3 3.5994 H22B···H23Cxiii 2.4914
C23···H22A 3.1568 H22B···H41Aiii 3.4733
C41···H3 2.6551 H22C···Cl3iv 2.9685
C41···H5 2.6417 H22C···C13ii 3.0812
H1···H3 3.5070 H22C···C14ii 3.0215
H1···H22A 2.8057 H22C···C23xiii 3.4270
H1···H22B 2.3138 H22C···C41iii 3.1160
H1···H22C 3.4335 H22C···H13ii 2.9099
H1···H23A 3.5643 H22C···H14ii 2.8675
H1···H23B 3.5155 H22C···H23Axiii 3.5648
H3···H23A 3.3418 H22C···H23Bxiii 3.2169
H3···H23B 3.2895 H22C···H23Cxiii 2.9647
H3···H41A 3.3170 H22C···H41Aiii 2.3690
H3···H41B 3.3166 H22C···H41Biii 3.3694
H3···H41C 2.3288 H22C···H41Ciii 3.1940
H5···H7 2.2295 H23A···Cl2v 3.5919
H5···H41A 2.7139 H23A···Cl3v 3.1320
H5···H41B 2.6993 H23A···C13ii 3.3162
H5···H41C 3.5623 H23A···C41xii 3.4958
H7···H9 2.1154 H23A···H13ii 2.5762
H9···H10 2.2441 H23A···H14ii 3.3818
H10···H11 2.3396 H23A···H22Cx 3.5648
H11···H13 2.4698 H23A···H41Axii 3.5024
H13···H14 2.3537 H23A···H41Bxii 2.7087
H14···H15 2.3407 H23B···C22x 3.4086
H22A···H23A 2.8302 H23B···C41xii 3.1304
Cl1···H5vi 3.0708 H23B···H22Bx 2.7957
Cl1···H7vi 2.8031 H23B···H22Cx 3.2169
Cl1···H9vi 2.9307 H23B···H23Cv 3.3169
Cl1···H15i 2.9475 H23B···H41Axii 3.2986
Cl2···H1x 3.2377 H23B···H41Bxii 2.5342
Cl2···H10vii 2.9803 H23B···H41Cxii 3.0848
Cl2···H14ix 2.9259 H23C···Cl2v 3.5506
Cl2···H22Av 3.1499 H23C···Cl3v 3.3025
Cl2···H23Av 3.5919 H23C···O3v 2.5118
Cl2···H23Cv 3.5506 H23C···C22x 3.1561
Cl3···H14ix 3.5973 H23C···C23v 2.8923
Cl3···H15i 3.1825 H23C···H22Bx 2.4914
Cl3···H22Civ 2.9685 H23C···H22Cx 2.9647
Cl3···H23Av 3.1320 H23C···H23Bv 3.3169
Cl3···H23Cv 3.3025 H23C···H23Cv 2.4340
Cl3···H41Axi 3.5133 H23C···H41Bxii 3.5922
O1···H9vi 3.2541 H41A···Cl3xiv 3.5133
O2···H13ii 2.7444 H41A···O2iii 3.1263
O2···H41Aiii 3.1263 H41A···C12vi 3.2550
O2···H41Ciii 3.1164 H41A···C13vi 3.1795
O3···H22Aiv 3.2379 H41A···C22iii 3.0891
O3···H22Biv 2.5561 H41A···H13vi 3.2147
O3···H23Cv 2.5118 H41A···H22Biii 3.4733
N1···H7vi 3.3148 H41A···H22Ciii 2.3690
N1···H10vii 3.5888 H41A···H23Axii 3.5024
C1···H9vi 3.2249 H41A···H23Bxii 3.2986
C1···H10vi 3.2819 H41B···C3xii 3.2191
C2···H10vi 3.1272 H41B···C23xii 3.0520
C3···H10vi 3.5113 H41B···H3xii 3.0192
C3···H41Bxii 3.2191 H41B···H11vii 3.2889
C4···H11vii 3.5357 H41B···H13vii 3.1965
C5···H11vii 3.0592 H41B···H22Ciii 3.3694
C6···H9vi 3.2517 H41B···H23Axii 2.7087
C6···H10vii 3.4747 H41B···H23Bxii 2.5342
C7···H7vi 3.5286 H41B···H23Cxii 3.5922
C7···H9vi 3.4348 H41C···O2iii 3.1164
C7···H10vii 3.2530 H41C···C22iii 3.5326
C8···H7vi 3.5846 H41C···H3iii 3.2938
C8···H9vii 3.3950 H41C···H11ii 2.9130
C9···H7vii 3.3861 H41C···H22Ciii 3.1940
C9···H9vii 3.4819 H41C···H23Bxii 3.0848
C10···H7vii 3.1259
Cl1—Sn1—Cl2 175.84 (3) C12—C13—C14 120.5 (4)
Cl1—Sn1—Cl3 91.63 (4) C13—C14—C15 119.1 (4)
Cl1—Sn1—O1 89.63 (10) N2—C15—C14 121.9 (3)
Cl1—Sn1—N1 88.80 (9) N2—C16—C8 119.1 (3)
Cl1—Sn1—N2 87.42 (10) N2—C16—C12 120.7 (4)
Cl2—Sn1—Cl3 91.91 (5) C8—C16—C12 120.3 (3)
Cl2—Sn1—O1 91.92 (10) O2—C21—O3 112.4 (3)
Cl2—Sn1—N1 87.40 (9) O2—C21—C2 108.0 (3)
Cl2—Sn1—N2 90.04 (10) O3—C21—C2 113.1 (3)
Cl3—Sn1—O1 99.80 (8) C2—C3—H3 119.462
Cl3—Sn1—N1 172.30 (8) C4—C3—H3 117.886
Cl3—Sn1—N2 96.15 (9) C4—C5—H5 117.907
O1—Sn1—N1 87.89 (11) C6—C5—H5 119.889
O1—Sn1—N2 163.86 (10) N1—C7—H7 119.449
N1—Sn1—N2 76.19 (11) C6—C7—H7 113.472
Sn1—O1—C1 128.15 (19) C8—C9—H9 122.470
C21—O2—C22 111.3 (3) C10—C9—H9 116.978
C21—O3—C23 114.7 (3) C9—C10—H10 116.927
Sn1—N1—C7 123.33 (19) C11—C10—H10 122.110
Sn1—N1—C8 114.4 (3) C10—C11—H11 121.166
C7—N1—C8 122.0 (3) C12—C11—H11 118.342
Sn1—N2—C15 124.7 (2) C12—C13—H13 115.150
Sn1—N2—C16 114.7 (3) C14—C13—H13 124.102
C15—N2—C16 120.5 (3) C13—C14—H14 121.206
O1—C1—C2 116.5 (3) C15—C14—H14 119.693
O1—C1—C6 124.9 (3) N2—C15—H15 118.475
C2—C1—C6 118.6 (3) C14—C15—H15 119.436
C1—C2—C3 119.8 (3) O2—C21—H1 110.026
C1—C2—C21 117.3 (3) O3—C21—H1 104.487
C3—C2—C21 122.9 (3) C2—C21—H1 108.782
C2—C3—C4 122.7 (3) O2—C22—H22A 109.469
C3—C4—C5 117.4 (4) O2—C22—H22B 109.470
C3—C4—C41 120.3 (3) O2—C22—H22C 109.471
C5—C4—C41 122.2 (3) H22A—C22—H22B 109.473
C4—C5—C6 122.2 (3) H22A—C22—H22C 109.468
C1—C6—C5 119.4 (3) H22B—C22—H22C 109.476
C1—C6—C7 125.2 (4) O3—C23—H23A 109.471
C5—C6—C7 115.5 (3) O3—C23—H23B 109.472
N1—C7—C6 127.1 (3) O3—C23—H23C 109.474
N1—C8—C9 125.4 (4) H23A—C23—H23B 109.469
N1—C8—C16 115.5 (3) H23A—C23—H23C 109.474
C9—C8—C16 119.1 (3) H23B—C23—H23C 109.469
C8—C9—C10 120.5 (4) C4—C41—H41A 109.468
C9—C10—C11 120.9 (3) C4—C41—H41B 109.471
C10—C11—C12 120.5 (3) C4—C41—H41C 109.471
C11—C12—C13 124.0 (3) H41A—C41—H41B 109.469
C11—C12—C16 118.8 (4) H41A—C41—H41C 109.478
C13—C12—C16 117.2 (3) H41B—C41—H41C 109.469
Cl1—Sn1—O1—C1 −109.7 (2) O1—C1—C2—C21 3.3 (4)
Cl1—Sn1—N1—C7 102.3 (2) O1—C1—C6—C5 173.9 (3)
Cl1—Sn1—N1—C8 −84.36 (17) O1—C1—C6—C7 −5.4 (5)
Cl1—Sn1—N2—C15 −90.7 (3) C2—C1—C6—C5 −2.3 (5)
Cl1—Sn1—N2—C16 85.53 (18) C2—C1—C6—C7 178.3 (3)
Cl2—Sn1—O1—C1 66.5 (2) C6—C1—C2—C3 1.3 (5)
Cl2—Sn1—N1—C7 −79.4 (2) C6—C1—C2—C21 179.8 (3)
Cl2—Sn1—N1—C8 93.95 (17) C1—C2—C3—C4 0.3 (5)
Cl2—Sn1—N2—C15 92.6 (3) C1—C2—C21—O2 −167.6 (3)
Cl2—Sn1—N2—C16 −91.18 (19) C1—C2—C21—O3 67.5 (4)
Cl3—Sn1—O1—C1 158.73 (18) C3—C2—C21—O2 10.9 (5)
Cl3—Sn1—N2—C15 0.7 (3) C3—C2—C21—O3 −114.1 (4)
Cl3—Sn1—N2—C16 176.89 (18) C21—C2—C3—C4 −178.1 (3)
O1—Sn1—N1—C7 12.7 (2) C2—C3—C4—C5 −0.8 (5)
O1—Sn1—N1—C8 −174.03 (19) C2—C3—C4—C41 178.8 (3)
N1—Sn1—O1—C1 −20.9 (2) C3—C4—C5—C6 −0.2 (5)
N1—Sn1—N2—C15 179.9 (3) C41—C4—C5—C6 −179.9 (3)
N1—Sn1—N2—C16 −3.87 (18) C4—C5—C6—C1 1.8 (5)
N2—Sn1—N1—C7 −170.0 (3) C4—C5—C6—C7 −178.8 (3)
N2—Sn1—N1—C8 3.27 (17) C1—C6—C7—N1 −2.7 (6)
Sn1—O1—C1—C2 −162.50 (17) C5—C6—C7—N1 177.9 (3)
Sn1—O1—C1—C6 21.2 (5) N1—C8—C9—C10 −177.8 (3)
C22—O2—C21—O3 −63.5 (4) N1—C8—C16—N2 −1.1 (5)
C22—O2—C21—C2 171.0 (3) N1—C8—C16—C12 179.0 (3)
C23—O3—C21—O2 −66.9 (3) C9—C8—C16—N2 −179.9 (3)
C23—O3—C21—C2 55.7 (4) C9—C8—C16—C12 0.2 (5)
Sn1—N1—C7—C6 −4.5 (5) C16—C8—C9—C10 0.8 (5)
Sn1—N1—C8—C9 176.4 (3) C8—C9—C10—C11 −0.6 (6)
Sn1—N1—C8—C16 −2.3 (4) C9—C10—C11—C12 −0.7 (6)
C7—N1—C8—C9 −10.2 (5) C10—C11—C12—C13 −178.8 (3)
C7—N1—C8—C16 171.1 (3) C10—C11—C12—C16 1.7 (6)
C8—N1—C7—C6 −177.3 (3) C11—C12—C13—C14 −179.6 (4)
Sn1—N2—C15—C14 177.3 (2) C11—C12—C16—N2 178.7 (3)
Sn1—N2—C16—C8 4.0 (4) C11—C12—C16—C8 −1.4 (5)
Sn1—N2—C16—C12 −176.08 (19) C13—C12—C16—N2 −0.9 (5)
C15—N2—C16—C8 −179.6 (3) C13—C12—C16—C8 179.0 (3)
C15—N2—C16—C12 0.3 (5) C16—C12—C13—C14 −0.1 (6)
C16—N2—C15—C14 1.3 (6) C12—C13—C14—C15 1.6 (6)
O1—C1—C2—C3 −175.3 (3) C13—C14—C15—N2 −2.2 (6)

Symmetry codes: (i) −x, −y, −z+1; (ii) x−1, y, z+1; (iii) −x−1, −y+1, −z+2; (iv) −x−1, −y, −z+2; (v) −x, −y, −z+2; (vi) −x, −y+1, −z+1; (vii) −x+1, −y+1, −z+1; (viii) x+1, y, z−1; (ix) −x+1, −y, −z+1; (x) x+1, y, z; (xi) x, y−1, z; (xii) −x, −y+1, −z+2; (xiii) x−1, y, z; (xiv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2385).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Rigaku (1998). REQAB Rigaku Corporation, Tokyo, Japan.
  3. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Takano, K. & Shibahara, T. (2008). Chem. Lett. 37, 70–71.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002528/pk2385sup1.cif

e-68-0m208-sup1.cif (32.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002528/pk2385Isup2.hkl

e-68-0m208-Isup2.hkl (293.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES