Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 31;68(Pt 2):m210. doi: 10.1107/S1600536812002796

catena-Poly[[lead(II)-bis­(μ2-quinolin-8-ol­ato)-κ3 N,O:O3 O:N,O] N,N-di­methyl­formamide hemisolvate]

Akbar Ghaemi a,, Zohreh Dadkhah a, Seik Weng Ng b, Edward R T Tiekink c,*
PMCID: PMC3274927  PMID: 22346874

Abstract

The asymmetric unit of the title compound, {[Pb(C9H6NO)2]·0.5C3H7NO}n, comprises Pb(quinolate)2 and half a dimethyl­formamide mol­ecule (which is disordered about a centre of inversion). The quinolate ligands N,O-chelate to a PbII ion and simultaneously bridge a neighbouring PbII ion to form a polymeric chain along [100] comprising Pb-linked Pb2O2 distorted rhombi. These chains pack to form a square grid, with the channels thus defined occupied by the disordered solvent mol­ecules.

Related literature

For a recent PbII mixed quinolate carboxyl­ate structure, see: Ghaemi et al. (2012). For the structure of the solvent-free PbII quinolate, see: Zhu et al. (2005).graphic file with name e-68-0m210-scheme1.jpg

Experimental

Crystal data

  • [Pb(C9H6NO)2]·0.5C3H7NO

  • M r = 532.04

  • Triclinic, Inline graphic

  • a = 8.1841 (2) Å

  • b = 9.6606 (3) Å

  • c = 10.8619 (3) Å

  • α = 96.683 (3)°

  • β = 98.277 (2)°

  • γ = 94.225 (3)°

  • V = 840.48 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.06 mm−1

  • T = 100 K

  • 0.30 × 0.08 × 0.04 mm

Data collection

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.152, T max = 0.689

  • 13299 measured reflections

  • 3866 independent reflections

  • 3613 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.049

  • S = 1.01

  • 3866 reflections

  • 272 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002796/hg5166sup1.cif

e-68-0m210-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002796/hg5166Isup2.hkl

e-68-0m210-Isup2.hkl (189.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pb—O2 2.408 (2)
Pb—O1 2.468 (2)
Pb—N2 2.470 (3)
Pb—N1 2.566 (3)
Pb—O1i 2.618 (2)
Pb—O2ii 2.812 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors gratefully acknowledge practical support of this study by the Islamic Azad University (Saveh Branch), and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM·C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

During the course of recent studies into the structural chemistry of mixed PbII quinolate carboxylates (Ghaemi et al., 2012), the title binary PbII quinolate was isolated as a DMF hemi-solvate, (I), from an attempted reaction with maleic acid. The crystal structure of the solvent free and polymeric Pb(quinolate)2 has been described (Zhu et al., 2005).

The asymmetric unit of (I) comprises Pb(quinolate)2 and half a solvent DMF molecule (this is disordered over a centre of inversion), Fig. 1. Each quinolate anion N,O-chelates a PbII atom and at the same time bridges a neighbouring PbII atom via the carbonyl-O atom. The result is a polymeric chain comprising alternating Pb2O2 rhombi, Fig. 2. The degree in asymmetry in the Pb—O bridges varies, Table 1. The coordination geometry of the PbII atom is based on a distorted pentagonal bipyramid with one N atom occupying an axial site. The lone pair of electrons occupies the second axial position. It is noted that the O3 and O3' atoms (each with a 0.25 site occupancy factor) of disordered DMF molecule approach the PbII at distances 2.903 (12) and 2.977 (12) Å, respectively. These are not trans to the axial N atom forming angles of approximately 140°. If one of the DMF-O atoms is included as part of the coordination sphere, the coordination geometry would be described as ψ-dodecahedral.

In the crystal packing, the polymeric chains pack into a square grid which defines channels in which reside the disordered solvent molecules, Fig. 3. The aforementioned weak Pb···O(DMF) interactions serve to connect the polymeric chains into a layer in the ab plane.

Experimental

The title complex was obtained by the following method. 8-Hydroxyquinoline (0.036 g, 0.25 mmol) was added to an aqueous solution (5 ml) of Pb(NO3)2 (0.082 g, 0.25 mmol). The mixture was stirred for 15 min. Then to this solution, a DMF solution (5 ml) of maleic acid (0.029 g, 0.25 mmol) which with triethylamine neutralized was added slowly at room temperature. This mixture was filtered. After keeping the filtrate in air, crystals were formed at the bottom of the vessel on slow evaporation of the solvents at room temperature. M.p. 590 K. Yield: 65%.

Refinement

Carbon-bound H atoms were placed in calculated positions [C—H 0.95–0.98 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The DMF molecule is disordered over two sites over a centre of inversion. The C—O distances were restrained to 1.25 (1) Å, the Ccarbonyl—N distances to 1.35 (1) Å and the Cmethyl—N distances to 1.45 (1) Å. Each component was restrained to lie on a plane; the anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones, and they were tightly restrained to be nearly isotropic.

The final difference Fourier map had a peak of 1.23 Å-3 at 1.10 Å from the Pb atom.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the polymeric chain along [100] in (I).

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents of (I) highlighting the square grid defined by the polymeric chains and the inclusion of the solvent molecules (shown in space-filling mode) in the channels.

Crystal data

[Pb(C9H6NO)2]·0.5C3H7NO Z = 2
Mr = 532.04 F(000) = 504
Triclinic, P1 Dx = 2.102 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1841 (2) Å Cell parameters from 8798 reflections
b = 9.6606 (3) Å θ = 2.5–27.5°
c = 10.8619 (3) Å µ = 10.06 mm1
α = 96.683 (3)° T = 100 K
β = 98.277 (2)° Block, yellow
γ = 94.225 (3)° 0.30 × 0.08 × 0.04 mm
V = 840.48 (4) Å3

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 3866 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3613 reflections with I > 2σ(I)
Mirror Rint = 0.036
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.5°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −12→12
Tmin = 0.152, Tmax = 0.689 l = −14→14
13299 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.0115P] where P = (Fo2 + 2Fc2)/3
3866 reflections (Δ/σ)max = 0.002
272 parameters Δρmax = 1.23 e Å3
36 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pb 0.758370 (14) 0.465630 (13) 0.543410 (11) 0.01554 (5)
O1 1.0552 (3) 0.4449 (3) 0.6130 (2) 0.0232 (6)
O2 0.5307 (3) 0.5563 (3) 0.6350 (2) 0.0180 (5)
N1 0.8296 (3) 0.4221 (3) 0.7727 (3) 0.0162 (6)
N2 0.8215 (4) 0.7122 (3) 0.6385 (3) 0.0249 (7)
C1 0.7215 (4) 0.4163 (4) 0.8528 (3) 0.0206 (8)
H1 0.6154 0.4481 0.8308 0.025*
C2 0.7575 (5) 0.3651 (4) 0.9686 (3) 0.0248 (8)
H2 0.6775 0.3630 1.0238 0.030*
C3 0.9089 (5) 0.3184 (4) 1.0005 (3) 0.0247 (8)
H3 0.9344 0.2833 1.0784 0.030*
C4 1.0284 (4) 0.3217 (4) 0.9190 (3) 0.0204 (8)
C5 1.1862 (5) 0.2725 (4) 0.9433 (4) 0.0259 (8)
H5 1.2177 0.2343 1.0190 0.031*
C6 1.2937 (5) 0.2792 (4) 0.8591 (4) 0.0296 (9)
H6 1.3985 0.2434 0.8756 0.036*
C7 1.2512 (4) 0.3389 (4) 0.7477 (4) 0.0253 (8)
H7 1.3301 0.3448 0.6920 0.030*
C8 1.0982 (4) 0.3891 (4) 0.7165 (3) 0.0193 (7)
C9 0.9830 (4) 0.3776 (4) 0.8040 (3) 0.0178 (7)
C10 0.9624 (5) 0.7881 (5) 0.6391 (6) 0.0462 (14)
H10 1.0427 0.7492 0.5938 0.055*
C11 0.9986 (6) 0.9237 (5) 0.7038 (7) 0.071 (2)
H11 1.1016 0.9753 0.7023 0.086*
C12 0.8836 (6) 0.9807 (5) 0.7689 (6) 0.0586 (17)
H12 0.9070 1.0722 0.8134 0.070*
C13 0.7312 (5) 0.9046 (4) 0.7703 (4) 0.0306 (9)
C14 0.6057 (5) 0.9570 (4) 0.8344 (4) 0.0311 (9)
H14 0.6214 1.0486 0.8795 0.037*
C15 0.4614 (5) 0.8749 (4) 0.8309 (4) 0.0299 (9)
H15 0.3775 0.9103 0.8744 0.036*
C16 0.4342 (5) 0.7391 (4) 0.7644 (4) 0.0263 (9)
H16 0.3319 0.6856 0.7640 0.032*
C17 0.5523 (4) 0.6806 (4) 0.6993 (3) 0.0188 (7)
C18 0.7048 (4) 0.7676 (4) 0.7030 (3) 0.0199 (7)
O3 0.5643 (14) 0.2137 (13) 0.5793 (11) 0.0316 (18) 0.25
N3 0.476 (2) −0.011 (2) 0.4938 (14) 0.0236 (17) 0.25
C19 0.588 (2) 0.1025 (17) 0.5172 (12) 0.031 (4) 0.25
H19 0.6900 0.0971 0.4850 0.037* 0.25
C20 0.319 (3) −0.009 (3) 0.540 (2) 0.026 (4) 0.25
H20A 0.3237 −0.0606 0.6134 0.039* 0.25
H20B 0.2305 −0.0539 0.4745 0.039* 0.25
H20C 0.2977 0.0877 0.5650 0.039* 0.25
C21 0.557 (2) −0.112 (2) 0.4205 (18) 0.026 (4) 0.25
H21A 0.4848 −0.1461 0.3412 0.039* 0.25
H21B 0.5803 −0.1910 0.4675 0.039* 0.25
H21C 0.6618 −0.0679 0.4030 0.039* 0.25
O3' 0.7253 (14) 0.1552 (12) 0.5310 (11) 0.0316 (18) 0.25
N3' 0.492 (3) 0.0002 (19) 0.4949 (14) 0.0236 (17) 0.25
C19' 0.5783 (18) 0.124 (2) 0.5450 (16) 0.031 (4) 0.25
H19' 0.5247 0.1905 0.5929 0.037* 0.25
C20' 0.511 (3) −0.130 (2) 0.4189 (19) 0.026 (4) 0.25
H20D 0.4190 −0.1498 0.3493 0.039* 0.25
H20E 0.5115 −0.2068 0.4708 0.039* 0.25
H20F 0.6162 −0.1220 0.3856 0.039* 0.25
C21' 0.323 (3) −0.023 (3) 0.518 (2) 0.026 (4) 0.25
H21D 0.3170 −0.0921 0.5772 0.039* 0.25
H21E 0.2505 −0.0590 0.4388 0.039* 0.25
H21F 0.2859 0.0649 0.5533 0.039* 0.25

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb 0.01436 (7) 0.01590 (8) 0.01590 (8) 0.00224 (5) 0.00048 (5) 0.00189 (5)
O1 0.0172 (12) 0.0320 (15) 0.0241 (14) 0.0070 (11) 0.0044 (10) 0.0146 (12)
O2 0.0180 (12) 0.0203 (13) 0.0154 (13) 0.0008 (10) 0.0042 (10) −0.0007 (10)
N1 0.0178 (14) 0.0164 (15) 0.0138 (15) 0.0004 (11) 0.0001 (11) 0.0032 (12)
N2 0.0189 (16) 0.0168 (16) 0.040 (2) 0.0027 (12) 0.0041 (14) 0.0068 (15)
C1 0.0215 (18) 0.0200 (19) 0.0199 (19) −0.0006 (14) 0.0047 (14) −0.0002 (15)
C2 0.034 (2) 0.024 (2) 0.0167 (19) −0.0017 (16) 0.0065 (16) 0.0016 (16)
C3 0.039 (2) 0.0175 (19) 0.0156 (18) 0.0003 (16) −0.0020 (16) 0.0022 (15)
C4 0.0273 (19) 0.0124 (17) 0.0176 (18) −0.0047 (14) −0.0054 (14) 0.0012 (14)
C5 0.028 (2) 0.021 (2) 0.025 (2) −0.0033 (15) −0.0080 (16) 0.0071 (16)
C6 0.0201 (19) 0.022 (2) 0.047 (3) 0.0030 (15) −0.0066 (17) 0.0151 (19)
C7 0.0186 (18) 0.025 (2) 0.034 (2) 0.0006 (15) 0.0031 (16) 0.0136 (18)
C8 0.0185 (17) 0.0180 (18) 0.0213 (19) −0.0001 (14) −0.0001 (14) 0.0072 (15)
C9 0.0184 (17) 0.0130 (17) 0.0195 (18) −0.0032 (13) −0.0028 (13) 0.0019 (14)
C10 0.021 (2) 0.024 (2) 0.095 (4) 0.0009 (17) 0.013 (2) 0.005 (3)
C11 0.031 (3) 0.021 (2) 0.158 (7) −0.003 (2) 0.015 (3) −0.003 (3)
C12 0.041 (3) 0.014 (2) 0.113 (5) −0.0008 (19) −0.002 (3) −0.007 (3)
C13 0.035 (2) 0.0173 (19) 0.036 (2) 0.0053 (16) −0.0092 (18) 0.0034 (18)
C14 0.048 (3) 0.019 (2) 0.024 (2) 0.0141 (18) −0.0063 (18) −0.0012 (17)
C15 0.049 (3) 0.031 (2) 0.0136 (19) 0.0164 (19) 0.0081 (17) 0.0035 (17)
C16 0.034 (2) 0.029 (2) 0.0175 (19) 0.0051 (17) 0.0097 (16) 0.0032 (17)
C17 0.0270 (19) 0.0208 (18) 0.0089 (16) 0.0056 (15) 0.0017 (14) 0.0023 (14)
C18 0.0213 (18) 0.0189 (18) 0.0193 (19) 0.0062 (14) −0.0017 (14) 0.0044 (15)
O3 0.036 (4) 0.026 (3) 0.031 (4) −0.003 (3) 0.005 (3) 0.003 (3)
N3 0.025 (4) 0.023 (3) 0.025 (3) −0.001 (3) 0.012 (2) 0.007 (2)
C19 0.029 (5) 0.031 (8) 0.035 (8) 0.001 (5) 0.006 (5) 0.017 (7)
C20 0.024 (5) 0.031 (6) 0.025 (5) 0.000 (4) 0.007 (4) 0.007 (4)
C21 0.029 (5) 0.026 (6) 0.026 (6) 0.005 (4) 0.012 (4) 0.003 (4)
O3' 0.036 (4) 0.026 (3) 0.031 (4) −0.003 (3) 0.005 (3) 0.003 (3)
N3' 0.025 (4) 0.023 (3) 0.025 (3) −0.001 (3) 0.012 (2) 0.007 (2)
C19' 0.029 (5) 0.031 (8) 0.035 (8) 0.001 (5) 0.006 (5) 0.017 (7)
C20' 0.024 (5) 0.031 (6) 0.025 (5) 0.000 (4) 0.007 (4) 0.007 (4)
C21' 0.029 (5) 0.026 (6) 0.026 (6) 0.005 (4) 0.012 (4) 0.003 (4)

Geometric parameters (Å, °)

Pb—O2 2.408 (2) C12—C13 1.403 (6)
Pb—O1 2.468 (2) C12—H12 0.9500
Pb—N2 2.470 (3) C13—C14 1.413 (6)
Pb—N1 2.566 (3) C13—C18 1.421 (5)
Pb—O1i 2.618 (2) C14—C15 1.366 (6)
Pb—O2ii 2.812 (2) C14—H14 0.9500
Pb—O3 2.903 (12) C15—C16 1.408 (6)
Pb—O3' 2.977 (12) C15—H15 0.9500
O1—C8 1.317 (4) C16—C17 1.392 (5)
O1—Pbi 2.618 (2) C16—H16 0.9500
O2—C17 1.304 (4) C17—C18 1.445 (5)
N1—C1 1.330 (4) O3—C19 1.244 (10)
N1—C9 1.367 (4) N3—C19 1.350 (10)
N2—C10 1.319 (5) N3—C20 1.449 (10)
N2—C18 1.367 (5) N3—C21 1.448 (10)
C1—C2 1.405 (5) C19—H19 0.9500
C1—H1 0.9500 C20—H20A 0.9800
C2—C3 1.361 (5) C20—H20B 0.9800
C2—H2 0.9500 C20—H20C 0.9800
C3—C4 1.412 (5) C21—H21A 0.9800
C3—H3 0.9500 C21—H21B 0.9800
C4—C5 1.409 (5) C21—H21C 0.9800
C4—C9 1.429 (5) O3'—C19' 1.254 (10)
C5—C6 1.361 (6) N3'—C19' 1.357 (10)
C5—H5 0.9500 N3'—C21' 1.453 (10)
C6—C7 1.410 (5) N3'—C20' 1.455 (10)
C6—H6 0.9500 C19'—H19' 0.9500
C7—C8 1.387 (5) C20'—H20D 0.9800
C7—H7 0.9500 C20'—H20E 0.9800
C8—C9 1.439 (5) C20'—H20F 0.9800
C10—C11 1.402 (7) C21'—H21D 0.9800
C10—H10 0.9500 C21'—H21E 0.9800
C11—C12 1.366 (8) C21'—H21F 0.9800
C11—H11 0.9500
O2—Pb—O1 136.81 (8) C11—C10—H10 118.6
O2—Pb—N2 67.61 (9) C12—C11—C10 119.0 (4)
O1—Pb—N2 84.94 (9) C12—C11—H11 120.5
O2—Pb—N1 77.78 (8) C10—C11—H11 120.5
O1—Pb—N1 65.49 (8) C11—C12—C13 120.4 (5)
N2—Pb—N1 82.06 (10) C11—C12—H12 119.8
O2—Pb—O1i 133.72 (8) C13—C12—H12 119.8
O1—Pb—O1i 67.90 (9) C12—C13—C14 123.6 (4)
N2—Pb—O1i 80.59 (10) C12—C13—C18 117.0 (4)
N1—Pb—O1i 131.30 (8) C14—C13—C18 119.4 (4)
C8—O1—Pb 118.6 (2) C15—C14—C13 119.4 (4)
C8—O1—Pbi 129.3 (2) C15—C14—H14 120.3
Pb—O1—Pbi 112.10 (9) C13—C14—H14 120.3
C17—O2—Pb 119.0 (2) C14—C15—C16 121.6 (4)
C1—N1—C9 119.1 (3) C14—C15—H15 119.2
C1—N1—Pb 124.9 (2) C16—C15—H15 119.2
C9—N1—Pb 114.9 (2) C17—C16—C15 122.2 (4)
C10—N2—C18 119.0 (4) C17—C16—H16 118.9
C10—N2—Pb 124.8 (3) C15—C16—H16 118.9
C18—N2—Pb 116.1 (2) O2—C17—C16 124.0 (3)
N1—C1—C2 122.8 (3) O2—C17—C18 119.8 (3)
N1—C1—H1 118.6 C16—C17—C18 116.2 (3)
C2—C1—H1 118.6 N2—C18—C13 121.8 (3)
C3—C2—C1 118.9 (3) N2—C18—C17 117.0 (3)
C3—C2—H2 120.5 C13—C18—C17 121.3 (3)
C1—C2—H2 120.5 C19—N3—C20 121.2 (19)
C2—C3—C4 120.7 (3) C19—N3—C21 103.1 (15)
C2—C3—H3 119.6 C20—N3—C21 135.6 (19)
C4—C3—H3 119.6 O3—C19—N3 122.8 (18)
C3—C4—C5 124.4 (3) O3—C19—H19 118.6
C3—C4—C9 116.8 (3) N3—C19—H19 118.6
C5—C4—C9 118.8 (3) C19'—N3'—C21' 118 (2)
C6—C5—C4 120.5 (4) C19'—N3'—C20' 141 (2)
C6—C5—H5 119.8 C21'—N3'—C20' 101.4 (16)
C4—C5—H5 119.8 O3'—C19'—N3' 123 (2)
C5—C6—C7 120.7 (3) O3'—C19'—H19' 118.6
C5—C6—H6 119.6 N3'—C19'—H19' 118.6
C7—C6—H6 119.6 N3'—C20'—H20D 109.5
C8—C7—C6 122.4 (3) N3'—C20'—H20E 109.5
C8—C7—H7 118.8 H20D—C20'—H20E 109.5
C6—C7—H7 118.8 N3'—C20'—H20F 109.5
O1—C8—C7 123.6 (3) H20D—C20'—H20F 109.5
O1—C8—C9 119.8 (3) H20E—C20'—H20F 109.5
C7—C8—C9 116.6 (3) N3'—C21'—H21D 109.5
N1—C9—C4 121.6 (3) N3'—C21'—H21E 109.5
N1—C9—C8 117.4 (3) H21D—C21'—H21E 109.5
C4—C9—C8 120.9 (3) N3'—C21'—H21F 109.5
N2—C10—C11 122.8 (4) H21D—C21'—H21F 109.5
N2—C10—H10 118.6 H21E—C21'—H21F 109.5
O2—Pb—O1—C8 50.9 (3) C6—C7—C8—C9 0.0 (6)
N2—Pb—O1—C8 100.2 (3) C1—N1—C9—C4 1.6 (5)
N1—Pb—O1—C8 16.6 (2) Pb—N1—C9—C4 −167.0 (3)
O1i—Pb—O1—C8 −178.0 (3) C1—N1—C9—C8 −178.3 (3)
O2—Pb—O1—Pbi −131.10 (11) Pb—N1—C9—C8 13.1 (4)
N2—Pb—O1—Pbi −81.88 (12) C3—C4—C9—N1 −1.8 (5)
N1—Pb—O1—Pbi −165.45 (14) C5—C4—C9—N1 177.5 (3)
O1i—Pb—O1—Pbi 0.0 C3—C4—C9—C8 178.2 (3)
O1—Pb—O2—C17 48.0 (3) C5—C4—C9—C8 −2.6 (5)
N2—Pb—O2—C17 −6.7 (2) O1—C8—C9—N1 2.0 (5)
N1—Pb—O2—C17 79.7 (2) C7—C8—C9—N1 −177.8 (3)
O1i—Pb—O2—C17 −57.0 (3) O1—C8—C9—C4 −177.9 (3)
O2—Pb—N1—C1 20.5 (3) C7—C8—C9—C4 2.3 (5)
O1—Pb—N1—C1 177.2 (3) C18—N2—C10—C11 0.3 (8)
N2—Pb—N1—C1 89.2 (3) Pb—N2—C10—C11 −174.2 (5)
O1i—Pb—N1—C1 159.2 (2) N2—C10—C11—C12 −0.2 (10)
O2—Pb—N1—C9 −171.7 (2) C10—C11—C12—C13 −0.4 (10)
O1—Pb—N1—C9 −14.9 (2) C11—C12—C13—C14 −179.3 (5)
N2—Pb—N1—C9 −103.0 (2) C11—C12—C13—C18 0.7 (8)
O1i—Pb—N1—C9 −33.0 (3) C12—C13—C14—C15 −179.7 (5)
O2—Pb—N2—C10 −179.4 (4) C18—C13—C14—C15 0.3 (6)
O1—Pb—N2—C10 34.7 (4) C13—C14—C15—C16 −0.3 (6)
N1—Pb—N2—C10 100.6 (4) C14—C15—C16—C17 0.3 (6)
O1i—Pb—N2—C10 −33.7 (4) Pb—O2—C17—C16 −174.8 (3)
O2—Pb—N2—C18 6.0 (2) Pb—O2—C17—C18 6.8 (4)
O1—Pb—N2—C18 −139.9 (3) C15—C16—C17—O2 −178.8 (3)
N1—Pb—N2—C18 −74.0 (3) C15—C16—C17—C18 −0.4 (5)
O1i—Pb—N2—C18 151.7 (3) C10—N2—C18—C13 0.0 (6)
C9—N1—C1—C2 −0.5 (5) Pb—N2—C18—C13 175.1 (3)
Pb—N1—C1—C2 166.9 (3) C10—N2—C18—C17 179.9 (4)
N1—C1—C2—C3 −0.4 (6) Pb—N2—C18—C17 −5.1 (4)
C1—C2—C3—C4 0.2 (6) C12—C13—C18—N2 −0.5 (6)
C2—C3—C4—C5 −178.4 (4) C14—C13—C18—N2 179.5 (3)
C2—C3—C4—C9 0.8 (5) C12—C13—C18—C17 179.6 (4)
C3—C4—C5—C6 179.7 (4) C14—C13—C18—C17 −0.3 (6)
C9—C4—C5—C6 0.5 (5) O2—C17—C18—N2 −0.9 (5)
C4—C5—C6—C7 1.7 (6) C16—C17—C18—N2 −179.4 (3)
C5—C6—C7—C8 −2.0 (6) O2—C17—C18—C13 178.9 (3)
Pb—O1—C8—C7 162.6 (3) C16—C17—C18—C13 0.4 (5)
Pbi—O1—C8—C7 −14.9 (5) C20—N3—C19—O3 0.0 (3)
Pb—O1—C8—C9 −17.2 (4) C21—N3—C19—O3 −179.9 (3)
Pbi—O1—C8—C9 165.3 (2) C21'—N3'—C19'—O3' 179.9 (3)
C6—C7—C8—O1 −179.8 (4) C20'—N3'—C19'—O3' 0.0 (5)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5166).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Ghaemi, A., Dadkhah, Z., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m97–m98. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  7. Zhu, L.-H., Zeng, M.-H. & Ng, S. W. (2005). Acta Cryst. E61, m1082–m1084.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002796/hg5166sup1.cif

e-68-0m210-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002796/hg5166Isup2.hkl

e-68-0m210-Isup2.hkl (189.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES