Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 31;68(Pt 2):m221–m222. doi: 10.1107/S160053681200311X

{4-Bromo-2-[(5-chloro-2-oxidophen­yl)imino­methyl]­phenolato-κ3 O,N,O′}(methanol-κO)(methano­lato-κO)­oxidovanadium(V)

Gholam Hossein Shahverdizadeh a,, Seik Weng Ng b,c, Edward R T Tiekink b,*, Babak Mirtamizdoust d
PMCID: PMC3274936  PMID: 22346883

Abstract

The title Schiff base complex, [V(C13H7BrClNO2)(CH3O)O(CH3OH)], features a vanadyl group, a tridentate Schiff base ligand, and coordinated methanol and methano­late ligands. The NO5 donor set is based on a distorted octa­hedron. Helical supra­molecular chains along [010] are found in the crystal structure mediated by O—H⋯O hydrogen bonds formed between the coordinating methanol mol­ecule and the phenolate O atom of the chloro­benzene residue.

Related literature

For the structures of (E)-2-(2-hy­droxy­benzyl­idene­amino)­phenolates containing halide atoms on the aromatic ring(s), see: Yenişehirli et al. (2010). For related Schiff base vanadyl complexes containing alcohol and alkoxide ligands, see: Hartung et al. (2007); Clague et al. (1993). For the crystallization procedure, see: Harrowfield et al. (1996).graphic file with name e-68-0m221-scheme1.jpg

Experimental

Crystal data

  • [V(C13H7BrClNO2)(CH3O)O(CH4O)]

  • M r = 454.57

  • Monoclinic, Inline graphic

  • a = 9.9585 (2) Å

  • b = 9.8949 (2) Å

  • c = 17.3612 (3) Å

  • β = 100.746 (2)°

  • V = 1680.74 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 9.42 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.02 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.255, T max = 0.834

  • 6974 measured reflections

  • 3453 independent reflections

  • 3125 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.131

  • S = 1.04

  • 3453 reflections

  • 221 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.37 e Å−3

  • Δρmin = −0.93 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200311X/hg5167sup1.cif

e-68-0m221-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200311X/hg5167Isup2.hkl

e-68-0m221-Isup2.hkl (169.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

V—O1 1.872 (2)
V—O2 1.937 (2)
V—O3 2.266 (2)
V—O4 1.766 (2)
V—O5 1.596 (2)
V—N1 2.170 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.84 (1) 1.89 (2) 2.702 (3) 163 (5)

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge support of this study by Tabriz Azad University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Structural studies of complexes with (E)-2-(2-hydroxybenzylideneamino)phenolates containing halide atoms on the aromatic ring(s) are comparatively rare (Yenişehirli et al., 2010) and those of complexes containing the (E)-4-bromo-2-((5-chloro-2-hydroxyphenylimino)methyl)phenolate ligand have not been reported. Herein we report the oxo-vanadium(V) complex of this ligand, (I).

The V atom in (I) is coordinated by the O,N,O-tridentate Schiff base ligand, an oxido-O atom, an O atom of the methoxido ligand and an O atom of the methanol ligand. The resulting NO5 donor set is based on an octahedron. The methanol ligand is trans to the oxido group and the VO(methanol) bond length is significantly longer than the VO(methanolate) bond, Table 1. The coordination geometry resembles those found in related V═O Schiff base compounds containing neutral and anionic forms of alcohols (Clague et al., 1993; Hartung et al., 2007).

The most prominent feature of the crystal packing is the formation of helical supramolecular chains along [010], Fig. 1 and Table 2. The connections between molecules are of the type O—H···O and involve the coordinated methanol molecule as the donor and the phenoxide-O atom of the chloro-substituted benzene ring as the acceptor.

Experimental

A solution of 4-chlorosalicylaldehyde (10 mmol) in EtOH (25 ml) was added drop-wise to a solution of 2-(aminomethyl)-4-bromophenol (10 mmol) in EtOH (15 ml). The mixture was refluxed for 5 h. The yellow precipitate was removed by filtration and recrystallized from MeOH solution. Then the ligand (0.8 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and oxovanadium(IV) bis(acetylacetonate) (0.8 mmol) placed in the other. Methanol was then added to fill both arms. The tube was sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After two weeks, crystals were deposited in the arm held at ambient temperature. They were filtered off, washed with acetone and ether, and air-dried. Yield: 61%. M.pt.: 517 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95–0.98 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxy H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H 0.84±0.01 Å; Uiso was refined. The final difference Fourier map had a peak ca 1 Å from Br.

Figures

Fig. 1.

Fig. 1.

The molecular of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the helical supramolecular chain along [010] in (I). The O—H···O hydrogen bonds are shown as orange dashed lines.

Crystal data

[V(C13H7BrClNO2)(CH3O)O(CH4O)] F(000) = 904
Mr = 454.57 Dx = 1.796 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 3765 reflections
a = 9.9585 (2) Å θ = 4.5–76.3°
b = 9.8949 (2) Å µ = 9.42 mm1
c = 17.3612 (3) Å T = 100 K
β = 100.746 (2)° Plate, brown
V = 1680.74 (6) Å3 0.20 × 0.20 × 0.02 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3453 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 3125 reflections with I > 2σ(I)
Mirror Rint = 0.029
Detector resolution: 10.4041 pixels mm-1 θmax = 76.5°, θmin = 4.8°
ω scan h = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −12→12
Tmin = 0.255, Tmax = 0.834 l = −10→21
6974 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0869P)2 + 1.3682P] where P = (Fo2 + 2Fc2)/3
3453 reflections (Δ/σ)max = 0.001
221 parameters Δρmax = 1.37 e Å3
1 restraint Δρmin = −0.93 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.21340 (4) 0.40275 (4) 0.54299 (2) 0.03558 (16)
V 0.58605 (5) 1.02259 (5) 0.71783 (3) 0.01590 (16)
Cl 0.86189 (8) 1.03418 (8) 0.37755 (4) 0.02228 (19)
O1 0.4952 (2) 0.8625 (2) 0.73417 (12) 0.0202 (4)
O2 0.7315 (2) 1.1284 (2) 0.68762 (12) 0.0177 (4)
O3 0.7673 (2) 0.8869 (2) 0.76214 (13) 0.0194 (4)
H3 0.752 (5) 0.8057 (17) 0.771 (3) 0.041 (13)*
O4 0.6177 (2) 1.0892 (2) 0.81386 (13) 0.0211 (5)
O5 0.4594 (2) 1.1120 (2) 0.67670 (13) 0.0220 (5)
N1 0.6091 (3) 0.9280 (3) 0.60826 (15) 0.0169 (5)
C1 0.4304 (3) 0.7660 (3) 0.68900 (17) 0.0181 (6)
C2 0.3401 (3) 0.6813 (3) 0.72029 (19) 0.0216 (6)
H2 0.3230 0.6980 0.7715 0.026*
C3 0.2760 (3) 0.5739 (3) 0.6771 (2) 0.0234 (7)
H3A 0.2160 0.5164 0.6986 0.028*
C4 0.3008 (3) 0.5516 (3) 0.6017 (2) 0.0237 (7)
C5 0.3868 (3) 0.6329 (3) 0.56906 (19) 0.0218 (6)
H5 0.4016 0.6157 0.5175 0.026*
C6 0.4529 (3) 0.7419 (3) 0.61230 (18) 0.0191 (6)
C7 0.5457 (3) 0.8232 (3) 0.57644 (17) 0.0182 (6)
H7 0.5606 0.7972 0.5260 0.022*
C8 0.7007 (3) 1.0031 (3) 0.57077 (18) 0.0171 (6)
C9 0.7317 (3) 0.9777 (3) 0.49641 (17) 0.0172 (6)
H9 0.6910 0.9041 0.4654 0.021*
C10 0.8226 (3) 1.0625 (3) 0.46973 (17) 0.0189 (6)
C11 0.8838 (3) 1.1709 (3) 0.51455 (18) 0.0212 (6)
H11 0.9462 1.2277 0.4946 0.025*
C12 0.8540 (3) 1.1961 (3) 0.58772 (18) 0.0202 (6)
H12 0.8950 1.2701 0.6182 0.024*
C13 0.7623 (3) 1.1110 (3) 0.61637 (17) 0.0169 (6)
C14 0.8841 (3) 0.9337 (4) 0.8166 (2) 0.0259 (7)
H14A 0.9514 0.8607 0.8278 0.039*
H14B 0.8559 0.9619 0.8653 0.039*
H14C 0.9250 1.0107 0.7939 0.039*
C15 0.5543 (4) 1.2004 (4) 0.84499 (19) 0.0256 (7)
H15A 0.5968 1.2136 0.9001 0.038*
H15B 0.4567 1.1817 0.8412 0.038*
H15C 0.5660 1.2822 0.8152 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0332 (2) 0.0270 (2) 0.0455 (3) −0.01347 (15) 0.00452 (18) −0.01039 (15)
V 0.0176 (3) 0.0136 (3) 0.0168 (3) −0.00055 (19) 0.0040 (2) −0.00131 (18)
Cl 0.0255 (4) 0.0234 (4) 0.0193 (4) 0.0001 (3) 0.0078 (3) 0.0003 (3)
O1 0.0231 (11) 0.0182 (10) 0.0201 (10) −0.0041 (9) 0.0057 (8) −0.0012 (8)
O2 0.0203 (10) 0.0146 (10) 0.0188 (10) −0.0018 (8) 0.0051 (8) −0.0001 (8)
O3 0.0208 (11) 0.0135 (10) 0.0228 (10) −0.0017 (8) 0.0008 (8) 0.0025 (8)
O4 0.0231 (11) 0.0203 (11) 0.0209 (10) −0.0001 (9) 0.0068 (8) −0.0028 (8)
O5 0.0212 (11) 0.0203 (11) 0.0241 (11) 0.0011 (9) 0.0035 (9) −0.0008 (8)
N1 0.0175 (12) 0.0151 (12) 0.0182 (11) 0.0005 (10) 0.0036 (9) −0.0008 (9)
C1 0.0169 (13) 0.0140 (14) 0.0225 (14) 0.0021 (11) 0.0017 (11) 0.0013 (11)
C2 0.0185 (14) 0.0193 (15) 0.0276 (15) −0.0004 (12) 0.0058 (12) 0.0011 (12)
C3 0.0174 (15) 0.0196 (15) 0.0334 (17) −0.0030 (12) 0.0052 (12) 0.0026 (13)
C4 0.0184 (15) 0.0161 (14) 0.0338 (17) −0.0032 (12) −0.0025 (12) −0.0014 (13)
C5 0.0213 (15) 0.0183 (15) 0.0244 (15) 0.0007 (12) 0.0006 (12) −0.0023 (12)
C6 0.0179 (14) 0.0146 (14) 0.0242 (14) −0.0001 (12) 0.0024 (11) 0.0018 (11)
C7 0.0198 (14) 0.0160 (14) 0.0190 (13) 0.0020 (12) 0.0039 (11) 0.0003 (11)
C8 0.0178 (14) 0.0132 (13) 0.0203 (14) 0.0002 (11) 0.0038 (11) 0.0005 (11)
C9 0.0203 (15) 0.0142 (14) 0.0171 (14) 0.0016 (11) 0.0031 (11) −0.0001 (10)
C10 0.0197 (14) 0.0201 (15) 0.0167 (13) 0.0032 (12) 0.0031 (11) −0.0003 (11)
C11 0.0220 (15) 0.0202 (15) 0.0219 (14) −0.0014 (12) 0.0055 (11) 0.0040 (12)
C12 0.0205 (14) 0.0169 (14) 0.0224 (14) −0.0014 (12) 0.0016 (11) −0.0012 (11)
C13 0.0173 (14) 0.0148 (13) 0.0181 (13) 0.0023 (11) 0.0019 (11) 0.0012 (11)
C14 0.0204 (16) 0.0208 (15) 0.0322 (17) −0.0014 (13) −0.0063 (13) 0.0010 (13)
C15 0.0266 (16) 0.0259 (16) 0.0260 (15) 0.0014 (14) 0.0092 (13) −0.0092 (13)

Geometric parameters (Å, °)

Br—C4 1.906 (3) C4—C5 1.372 (5)
V—O1 1.872 (2) C5—C6 1.405 (4)
V—O2 1.937 (2) C5—H5 0.9500
V—O3 2.266 (2) C6—C7 1.451 (4)
V—O4 1.766 (2) C7—H7 0.9500
V—O5 1.596 (2) C8—C13 1.400 (4)
V—N1 2.170 (3) C8—C9 1.405 (4)
Cl—C10 1.740 (3) C9—C10 1.377 (4)
O1—C1 1.324 (4) C9—H9 0.9500
O2—C13 1.340 (4) C10—C11 1.397 (4)
O3—C14 1.433 (4) C11—C12 1.380 (4)
O3—H3 0.835 (10) C11—H11 0.9500
O4—C15 1.424 (4) C12—C13 1.400 (4)
N1—C7 1.284 (4) C12—H12 0.9500
N1—C8 1.425 (4) C14—H14A 0.9800
C1—C6 1.411 (4) C14—H14B 0.9800
C1—C2 1.411 (4) C14—H14C 0.9800
C2—C3 1.385 (5) C15—H15A 0.9800
C2—H2 0.9500 C15—H15B 0.9800
C3—C4 1.396 (5) C15—H15C 0.9800
C3—H3A 0.9500
O5—V—O4 101.68 (11) C6—C5—H5 120.1
O5—V—O1 99.96 (11) C5—C6—C1 119.6 (3)
O4—V—O1 100.33 (10) C5—C6—C7 118.0 (3)
O5—V—O2 98.49 (11) C1—C6—C7 122.5 (3)
O4—V—O2 92.46 (10) N1—C7—C6 124.4 (3)
O1—V—O2 154.86 (10) N1—C7—H7 117.8
O5—V—N1 92.90 (11) C6—C7—H7 117.8
O4—V—N1 163.59 (11) C13—C8—C9 120.5 (3)
O1—V—N1 84.30 (10) C13—C8—N1 112.9 (3)
O2—V—N1 77.84 (9) C9—C8—N1 126.5 (3)
O5—V—O3 173.36 (10) C10—C9—C8 118.1 (3)
O4—V—O3 84.85 (10) C10—C9—H9 120.9
O1—V—O3 79.86 (9) C8—C9—H9 120.9
O2—V—O3 79.85 (9) C9—C10—C11 121.8 (3)
N1—V—O3 80.47 (9) C9—C10—Cl 119.1 (2)
C1—O1—V 135.74 (19) C11—C10—Cl 119.1 (2)
C13—O2—V 119.48 (19) C12—C11—C10 120.3 (3)
C14—O3—V 122.00 (19) C12—C11—H11 119.8
C14—O3—H3 110 (3) C10—C11—H11 119.8
V—O3—H3 118 (4) C11—C12—C13 119.0 (3)
C15—O4—V 129.3 (2) C11—C12—H12 120.5
C7—N1—C8 122.0 (3) C13—C12—H12 120.5
C7—N1—V 127.0 (2) O2—C13—C12 121.8 (3)
C8—N1—V 110.89 (19) O2—C13—C8 117.9 (3)
O1—C1—C6 122.4 (3) C12—C13—C8 120.3 (3)
O1—C1—C2 118.4 (3) O3—C14—H14A 109.5
C6—C1—C2 119.2 (3) O3—C14—H14B 109.5
C3—C2—C1 120.7 (3) H14A—C14—H14B 109.5
C3—C2—H2 119.7 O3—C14—H14C 109.5
C1—C2—H2 119.7 H14A—C14—H14C 109.5
C2—C3—C4 119.0 (3) H14B—C14—H14C 109.5
C2—C3—H3A 120.5 O4—C15—H15A 109.5
C4—C3—H3A 120.5 O4—C15—H15B 109.5
C5—C4—C3 121.8 (3) H15A—C15—H15B 109.5
C5—C4—Br 119.4 (3) O4—C15—H15C 109.5
C3—C4—Br 118.8 (3) H15A—C15—H15C 109.5
C4—C5—C6 119.7 (3) H15B—C15—H15C 109.5
C4—C5—H5 120.1
O5—V—O1—C1 69.0 (3) C2—C3—C4—C5 0.0 (5)
O4—V—O1—C1 172.9 (3) C2—C3—C4—Br 179.5 (2)
O2—V—O1—C1 −67.7 (4) C3—C4—C5—C6 0.2 (5)
N1—V—O1—C1 −23.0 (3) Br—C4—C5—C6 −179.2 (2)
O3—V—O1—C1 −104.3 (3) C4—C5—C6—C1 0.3 (5)
O5—V—O2—C13 −82.2 (2) C4—C5—C6—C7 178.4 (3)
O4—V—O2—C13 175.6 (2) O1—C1—C6—C5 176.3 (3)
O1—V—O2—C13 54.6 (3) C2—C1—C6—C5 −1.0 (4)
N1—V—O2—C13 8.9 (2) O1—C1—C6—C7 −1.7 (5)
O3—V—O2—C13 91.2 (2) C2—C1—C6—C7 −179.1 (3)
O4—V—O3—C14 −36.8 (2) C8—N1—C7—C6 179.1 (3)
O1—V—O3—C14 −138.3 (2) V—N1—C7—C6 −5.0 (4)
O2—V—O3—C14 56.6 (2) C5—C6—C7—N1 177.6 (3)
N1—V—O3—C14 135.9 (2) C1—C6—C7—N1 −4.3 (5)
O5—V—O4—C15 −4.4 (3) C7—N1—C8—C13 −178.1 (3)
O1—V—O4—C15 −106.9 (3) V—N1—C8—C13 5.4 (3)
O2—V—O4—C15 94.8 (3) C7—N1—C8—C9 1.7 (5)
N1—V—O4—C15 147.9 (4) V—N1—C8—C9 −174.8 (3)
O3—V—O4—C15 174.4 (3) C13—C8—C9—C10 −0.7 (5)
O5—V—N1—C7 −85.7 (3) N1—C8—C9—C10 179.6 (3)
O4—V—N1—C7 121.4 (4) C8—C9—C10—C11 0.2 (5)
O1—V—N1—C7 14.0 (3) C8—C9—C10—Cl −179.5 (2)
O2—V—N1—C7 176.2 (3) C9—C10—C11—C12 0.0 (5)
O3—V—N1—C7 94.6 (3) Cl—C10—C11—C12 179.7 (2)
O5—V—N1—C8 90.5 (2) C10—C11—C12—C13 0.4 (5)
O4—V—N1—C8 −62.3 (4) V—O2—C13—C12 171.7 (2)
O1—V—N1—C8 −169.7 (2) V—O2—C13—C8 −8.8 (4)
O2—V—N1—C8 −7.54 (19) C11—C12—C13—O2 178.6 (3)
O3—V—N1—C8 −89.1 (2) C11—C12—C13—C8 −0.9 (5)
V—O1—C1—C6 21.3 (5) C9—C8—C13—O2 −178.4 (3)
V—O1—C1—C2 −161.3 (2) N1—C8—C13—O2 1.4 (4)
O1—C1—C2—C3 −176.2 (3) C9—C8—C13—C12 1.0 (5)
C6—C1—C2—C3 1.3 (5) N1—C8—C13—C12 −179.2 (3)
C1—C2—C3—C4 −0.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2i 0.84 (1) 1.89 (2) 2.702 (3) 163 (5)

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5167).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Clague, M. J., Keder, N. L. & Butler, A. (1993). Inorg. Chem. 32, 4754–4761.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.
  6. Hartung, J., Ludwig, A., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, m1422–m1423.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  9. Yenişehirli, G., Öztaş, N. A., Şahin, E., Çelebier, M., Ancin, N. & Öztaş, S. G. (2010). Heteroat. Chem 21, 373–385.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200311X/hg5167sup1.cif

e-68-0m221-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200311X/hg5167Isup2.hkl

e-68-0m221-Isup2.hkl (169.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES