Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 31;68(Pt 2):m227–m228. doi: 10.1107/S1600536812003431

Chlorido(1,2-dimethyl-1H-imidazole-κN 3){2-[(diphen­oxy­phosphan­yl)­oxy]phenyl-κ2 C 1,P}palladium(II)

Izabela Błaszczyk a, Anna M Trzeciak a, Andrzej Gniewek a,*
PMCID: PMC3274940  PMID: 22346887

Abstract

The Pd atom in the title compound, [Pd(C18H14O3P)Cl(C5H8N2)], adopts a slightly distorted square-planar coordination geometry, with the metallated carbon positioned trans to the Cl atom. The crystal structure is stabilized by several weak C—H⋯O and C—H⋯Cl hydrogen-bond inter­actions. One of the phenyl rings is disordered over two almost equally occupied sites.

Related literature

The structure of the title compound was determined as part of a larger study on orthopalladated triaryl­phosphite complexes. For related structures and further discussion, see: Albinati et al. (1990); Błaszczyk et al. (2011). For the catalytic reactions, see: Miyaura et al. (1981); Sonogashira et al. (1975). For bond lengths in coordination complexes, see: Orpen et al. (1989). For hydrogen-bond inter­actions, see: Aullón et al. (1998); Desiraju & Steiner (1999). For details of the temperature control applied during data collection, see: Cosier & Glazer (1986); and for specifications of analytical numeric absorption correction, see: Clark & Reid (1995).graphic file with name e-68-0m227-scheme1.jpg

Experimental

Crystal data

  • [Pd(C18H14O3P)Cl(C5H8N2)]

  • M r = 547.25

  • Triclinic, Inline graphic

  • a = 9.212 (4) Å

  • b = 9.370 (4) Å

  • c = 14.295 (5) Å

  • α = 85.30 (3)°

  • β = 84.83 (3)°

  • γ = 69.08 (3)°

  • V = 1146.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 100 K

  • 0.34 × 0.16 × 0.12 mm

Data collection

  • Kuma KM-4 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.812, T max = 0.908

  • 12801 measured reflections

  • 5113 independent reflections

  • 4855 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.082

  • S = 1.37

  • 5113 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812003431/bt5799sup1.cif

e-68-0m227-sup1.cif (33.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003431/bt5799Isup2.hkl

e-68-0m227-Isup2.hkl (245.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pd—C11 2.003 (3)
Pd—N41 2.088 (3)
Pd—P 2.1667 (12)
Pd—Cl 2.3890 (12)
P—Pd—Cl 94.52 (4)
P—Pd—C11 81.51 (10)
C11—Pd—N41 93.91 (12)
N41—Pd—Cl 89.88 (8)
C11—Pd—Cl 175.48 (8)
N41—Pd—P 173.55 (8)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3i 0.95 2.66 3.365 (4) 132
C15—H15⋯Cli 0.95 2.80 3.720 (4) 162
C33—H33⋯Clii 0.95 2.88 3.541 (4) 128
C35—H35⋯Cliii 0.95 2.89 3.817 (4) 164
C44—H44⋯Cliv 0.95 2.78 3.651 (4) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by European funds in the frame of the Human Capital Operational Programme through project No. POKL.04.01.01–00-054/10–00 ‘Development of the potential and educational offer of the University of Wrocław – the chance to enhance the competitiveness of the University’. The financial support is gratefully acknowledged.

supplementary crystallographic information

Comment

Carbon-carbon bond-forming catalytic reactions are very important fundamental processes in synthetic chemistry. Among them, the commonly recognized are the Suzuki-Miyaura reaction that leads to formation of biphenyl derivates (Miyaura et al., 1981) and the Sonogashira reaction, which produces phenylated alkines (Sonogashira et al., 1975). In this paper we report the crystallization of a palladacyclic triphenylphosphite complex with a 1,2-dimethylimidazole ligand, the title compound. This complex exhibited high catalytic activity in the Suzuki-Miyaura reaction in ethylene glycol and in the Sonogashira reaction in ionic liquids (Błaszczyk et al., 2011).

The molecular structure of the title compound reveals that the coordination environment of the Pd atom is a slightly distorted square-planar (Fig. 1). The angles between adjacent ligands deviate somewhat from the expected value of 90° (Table 1). However, the observed bond distances and angles are similar to the already reported for analogous complexes (Błaszczyk et al., 2011). In the title compound the metallated carbon is in the trans orientation to the Cl atom. As a result of the trans influence of the aryl group, the Pd—Cl bond length (Table 1) appears somewhat longer than expected for palladium complexes: 2.298–2.354Å (Orpen et al., 1989). The imidazole ring is oriented at 75.7° with respect to the coordination plane of palladium. The C21—C26 phenyl ring is disordered over two positions with site occupancy factors about 51 and 49%.

The structure is stabilized by a few weak hydrogen bonds of the C—H···O and C—H···Cl types (Desiraju & Steiner, 1999). Consequently, a three-dimensional network of such interactions is formed in the crystal. The shortest C—H···Cl distances observed in the title compound are similar to the values of the N—H···Cl hydrogen bonds identified for Cl bonded to a transition metal (Aullón et al., 1998).

Experimental

The title compound was prepared according to the previously reported procedure (Błaszczyk et al., 2011): 1,2-dimethylimidazole (0.128 g, 1,32 mmol) was added to the solution of [PdCl{P(OC6H4)(OC6H5)2}]2 (0.30 g, 0.33 mmol) in dichloromethane (4 ml). The starting dimeric palladyclic complex [PdCl{P(OC6H4)(OC6H5)2}]2 had been obtained according to published method (Albinati et al., 1990). The solution was stirred at room temperature for 1 h. The solvent was evaporated in vacuo and the white product was precipitated by addition of ethanol and recrystallized from a mixure of dichloromethane and ethanol. Yield: 0.35 g, 97%. Analysis calculated: C 50.48, H 4.05, N 5.12%; found: C 50.30, H 3.98, N 4.93%. 1H NMR (CDCl3): δ 8.27 (1H, t, J = 6.1 Hz; orthopalladated ring), 6.30–7.60 (m, Ph), 3.54 (3H, s, CH3; major isomer), 3.45 (3H, s, CH3; minor isomer), 2.29 (3H, s, CH3; major isomer), 2.07 (3H, s, CH3; minor isomer). 31P NMR (CDCl3): δ 132.17 (major isomer), 124.70 (minor isomer).

Refinement

All the carbon-bonded H atoms were positioned geometrically and refined using a riding model with aromatic C—H = 0.95Å and Uiso(H) = 1.2Ueq(C). The methyl groups were refined with C—H = 0.98Å and Uiso(H) = 1.5Ueq(C). One of the phenyl rings is disordered over two sites with a site occupation factor of 0.512 (8) for the major occupied site. The highest residual peak and the deepest hole in the final difference map are located 0.73 and 0.80Å from the C32 and H26B atom, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure and atom numbering scheme of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Disordered parts with lower occupancy are represented by dashed lines.

Crystal data

[Pd(C18H14O3P)Cl(C5H8N2)] Z = 2
Mr = 547.25 F(000) = 552
Triclinic, P1 Dx = 1.586 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.212 (4) Å Cell parameters from 8960 reflections
b = 9.370 (4) Å θ = 5.0–27.5°
c = 14.295 (5) Å µ = 1.02 mm1
α = 85.30 (3)° T = 100 K
β = 84.83 (3)° Plate, colorless
γ = 69.08 (3)° 0.34 × 0.16 × 0.12 mm
V = 1146.2 (8) Å3

Data collection

Kuma KM-4 CCD diffractometer 5113 independent reflections
Radiation source: fine-focus sealed tube 4855 reflections with I > 2σ(I)
graphite Rint = 0.023
ω scans θmax = 27.5°, θmin = 5.0°
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010) h = −11→11
Tmin = 0.812, Tmax = 0.908 k = −12→10
12801 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: heavy-atom method
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H-atom parameters constrained
S = 1.37 w = 1/[σ2(Fo2) + (0.0102P)2 + 2.9228P] where P = (Fo2 + 2Fc2)/3
5113 reflections (Δ/σ)max = 0.001
319 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 K. Analytical numeric absorption correction was carried out with CrysAlis RED (Oxford Diffraction, 2010) using a multifaceted crystal model (Clark & Reid, 1995).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pd 0.17867 (3) 0.19205 (3) 0.287224 (16) 0.01206 (7)
Cl 0.37905 (9) 0.25690 (9) 0.34805 (6) 0.01847 (16)
P 0.32350 (9) 0.07995 (9) 0.16750 (6) 0.01384 (16)
O1 0.2280 (3) −0.0022 (3) 0.11667 (16) 0.0180 (5)
O2 0.3945 (3) 0.1646 (3) 0.08571 (17) 0.0218 (5)
O3 0.4854 (2) −0.0534 (2) 0.18349 (16) 0.0173 (5)
C11 0.0240 (4) 0.1235 (3) 0.2318 (2) 0.0150 (6)
C12 0.0744 (4) 0.0299 (3) 0.1564 (2) 0.0150 (6)
C13 −0.0176 (4) −0.0347 (4) 0.1165 (2) 0.0209 (7)
H13 0.0237 −0.1021 0.0668 0.025*
C14 −0.1716 (4) 0.0014 (4) 0.1510 (3) 0.0226 (7)
H14 −0.2374 −0.0405 0.1244 0.027*
C15 −0.2290 (4) 0.0983 (4) 0.2240 (3) 0.0212 (7)
H15 −0.3349 0.1245 0.2467 0.025*
C16 −0.1326 (4) 0.1576 (4) 0.2644 (2) 0.0172 (6)
H16 −0.1735 0.2227 0.3153 0.021*
C21 0.3189 (4) 0.3137 (4) 0.0487 (2) 0.0192 (7)
C22A 0.2635 (12) 0.3470 (9) −0.0393 (6) 0.0265 (18) 0.512 (8)
H22A 0.2646 0.2664 −0.0760 0.032* 0.512 (8)
C23A 0.2057 (12) 0.4969 (9) −0.0752 (6) 0.0266 (18) 0.512 (8)
H23A 0.1703 0.5151 −0.1369 0.032* 0.512 (8)
C22B 0.2028 (10) 0.3323 (9) −0.0075 (6) 0.0205 (16) 0.488 (8)
H22B 0.1667 0.2512 −0.0155 0.025* 0.488 (8)
C23B 0.1383 (11) 0.4748 (10) −0.0532 (6) 0.0242 (18) 0.488 (8)
H23B 0.0588 0.4931 −0.0954 0.029* 0.488 (8)
C24 0.1979 (5) 0.6019 (5) −0.0343 (4) 0.0454 (13)
H24 0.1632 0.7006 −0.0654 0.054*
C25A 0.2420 (8) 0.5870 (8) 0.0695 (5) 0.0246 (18) 0.512 (8)
H25A 0.2305 0.6729 0.1044 0.030* 0.512 (8)
C26A 0.2995 (8) 0.4382 (8) 0.1067 (6) 0.0235 (18) 0.512 (8)
H26A 0.3260 0.4183 0.1704 0.028* 0.512 (8)
C25B 0.3224 (9) 0.5607 (8) 0.0083 (5) 0.0251 (19) 0.488 (8)
H25B 0.3752 0.6314 0.0077 0.030* 0.488 (8)
C26B 0.3876 (8) 0.4183 (8) 0.0560 (5) 0.0179 (17) 0.488 (8)
H26B 0.4758 0.3959 0.0919 0.022* 0.488 (8)
C31 0.4900 (4) −0.1763 (4) 0.2486 (2) 0.0176 (6)
C32 0.4921 (5) −0.3100 (4) 0.2149 (3) 0.0357 (10)
H32 0.4843 −0.3176 0.1498 0.043*
C33 0.5056 (7) −0.4331 (5) 0.2778 (3) 0.0476 (13)
H33 0.5091 −0.5271 0.2555 0.057*
C34 0.5142 (5) −0.4215 (4) 0.3726 (3) 0.0315 (9)
H34 0.5214 −0.5065 0.4154 0.038*
C35 0.5123 (4) −0.2865 (4) 0.4047 (3) 0.0250 (7)
H35 0.5190 −0.2786 0.4699 0.030*
C36 0.5005 (4) −0.1614 (4) 0.3424 (2) 0.0218 (7)
H36 0.4997 −0.0680 0.3642 0.026*
N41 0.0314 (3) 0.2786 (3) 0.40502 (19) 0.0162 (5)
C42 0.0513 (4) 0.2164 (4) 0.4918 (2) 0.0173 (6)
N43 −0.0556 (3) 0.3072 (3) 0.5523 (2) 0.0215 (6)
C44 −0.1489 (4) 0.4326 (4) 0.5023 (3) 0.0247 (7)
H44 −0.2346 0.5153 0.5266 0.030*
C45 −0.0937 (4) 0.4145 (4) 0.4108 (2) 0.0214 (7)
H45 −0.1345 0.4839 0.3593 0.026*
C46 0.1716 (4) 0.0676 (4) 0.5190 (3) 0.0248 (7)
H46A 0.2526 0.0860 0.5510 0.037*
H46B 0.2184 0.0114 0.4625 0.037*
H46C 0.1232 0.0074 0.5614 0.037*
C47 −0.0743 (5) 0.2778 (5) 0.6540 (3) 0.0351 (9)
H47A −0.1217 0.1991 0.6667 0.053*
H47B −0.1417 0.3723 0.6829 0.053*
H47C 0.0278 0.2423 0.6806 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd 0.01199 (11) 0.01131 (11) 0.01229 (12) −0.00371 (8) 0.00158 (8) −0.00174 (8)
Cl 0.0169 (3) 0.0196 (4) 0.0210 (4) −0.0083 (3) 0.0018 (3) −0.0075 (3)
P 0.0139 (4) 0.0121 (4) 0.0140 (4) −0.0037 (3) 0.0029 (3) −0.0007 (3)
O1 0.0159 (11) 0.0207 (11) 0.0161 (11) −0.0048 (9) 0.0028 (9) −0.0058 (9)
O2 0.0257 (12) 0.0151 (11) 0.0198 (12) −0.0046 (9) 0.0103 (10) 0.0012 (9)
O3 0.0136 (10) 0.0136 (10) 0.0230 (12) −0.0038 (8) 0.0031 (9) 0.0001 (9)
C11 0.0141 (14) 0.0149 (14) 0.0156 (14) −0.0049 (11) −0.0022 (11) 0.0028 (12)
C12 0.0144 (14) 0.0152 (14) 0.0137 (14) −0.0040 (11) −0.0001 (11) 0.0022 (12)
C13 0.0262 (17) 0.0216 (16) 0.0154 (15) −0.0087 (14) −0.0018 (13) −0.0024 (13)
C14 0.0221 (17) 0.0251 (17) 0.0249 (17) −0.0131 (14) −0.0060 (14) 0.0014 (14)
C15 0.0161 (15) 0.0214 (16) 0.0269 (18) −0.0082 (13) −0.0014 (13) 0.0020 (14)
C16 0.0166 (15) 0.0151 (14) 0.0184 (15) −0.0044 (12) 0.0019 (12) −0.0015 (12)
C21 0.0191 (15) 0.0187 (16) 0.0175 (15) −0.0059 (12) 0.0039 (12) 0.0026 (13)
C22A 0.041 (5) 0.020 (4) 0.019 (4) −0.012 (3) 0.008 (4) −0.005 (3)
C23A 0.033 (5) 0.022 (4) 0.017 (4) −0.002 (3) 0.000 (3) 0.006 (3)
C22B 0.020 (4) 0.020 (4) 0.023 (4) −0.009 (3) 0.000 (3) −0.001 (3)
C23B 0.020 (4) 0.030 (4) 0.022 (4) −0.008 (3) −0.003 (3) 0.005 (3)
C24 0.027 (2) 0.037 (3) 0.062 (3) −0.0071 (18) 0.000 (2) 0.034 (2)
C25A 0.025 (4) 0.018 (3) 0.032 (4) −0.009 (3) −0.003 (3) −0.003 (3)
C26A 0.020 (4) 0.019 (3) 0.030 (4) −0.006 (3) −0.007 (3) 0.000 (3)
C25B 0.035 (4) 0.022 (4) 0.022 (4) −0.016 (3) −0.001 (3) 0.003 (3)
C26B 0.023 (4) 0.021 (3) 0.011 (3) −0.010 (3) −0.003 (3) 0.001 (3)
C31 0.0125 (14) 0.0144 (14) 0.0250 (17) −0.0040 (11) −0.0034 (12) 0.0035 (13)
C32 0.060 (3) 0.0213 (18) 0.032 (2) −0.0178 (18) −0.025 (2) 0.0042 (16)
C33 0.084 (4) 0.022 (2) 0.049 (3) −0.028 (2) −0.038 (3) 0.0105 (19)
C34 0.037 (2) 0.0216 (18) 0.039 (2) −0.0123 (16) −0.0185 (18) 0.0119 (16)
C35 0.0239 (17) 0.0234 (17) 0.0231 (17) −0.0028 (14) −0.0045 (14) 0.0020 (14)
C36 0.0235 (17) 0.0168 (15) 0.0232 (17) −0.0047 (13) 0.0000 (13) −0.0034 (13)
N41 0.0158 (12) 0.0161 (13) 0.0165 (13) −0.0053 (10) 0.0010 (10) −0.0036 (10)
C42 0.0157 (15) 0.0180 (15) 0.0183 (15) −0.0060 (12) 0.0014 (12) −0.0030 (12)
N43 0.0237 (14) 0.0236 (14) 0.0147 (13) −0.0057 (12) 0.0033 (11) −0.0035 (11)
C44 0.0250 (17) 0.0212 (17) 0.0212 (17) −0.0006 (14) 0.0031 (14) −0.0028 (14)
C45 0.0211 (16) 0.0174 (16) 0.0217 (17) −0.0019 (13) 0.0000 (13) −0.0028 (13)
C46 0.0254 (18) 0.0217 (17) 0.0205 (17) −0.0012 (14) 0.0006 (14) 0.0026 (14)
C47 0.042 (2) 0.038 (2) 0.0152 (17) −0.0047 (18) 0.0085 (16) −0.0018 (16)

Geometric parameters (Å, °)

Pd—C11 2.003 (3) C24—H24 0.9500
Pd—N41 2.088 (3) C25A—C26A 1.381 (11)
Pd—P 2.1667 (12) C25A—H25A 0.9500
Pd—Cl 2.3890 (12) C26A—H26A 0.9500
P—O2 1.582 (2) C25B—C26B 1.400 (11)
P—O3 1.588 (2) C25B—H25B 0.9500
P—O1 1.607 (3) C26B—H26B 0.9500
O1—C12 1.412 (4) C31—C32 1.373 (5)
O2—C21 1.403 (4) C31—C36 1.375 (5)
O3—C31 1.411 (4) C32—C33 1.379 (5)
C11—C12 1.386 (5) C32—H32 0.9500
C11—C16 1.404 (5) C33—C34 1.379 (5)
C12—C13 1.385 (5) C33—H33 0.9500
C13—C14 1.388 (5) C34—C35 1.375 (5)
C13—H13 0.9500 C34—H34 0.9500
C14—C15 1.380 (5) C35—C36 1.390 (5)
C14—H14 0.9500 C35—H35 0.9500
C15—C16 1.388 (5) C36—H36 0.9500
C15—H15 0.9500 N41—C42 1.326 (4)
C16—H16 0.9500 N41—C45 1.381 (4)
C21—C22B 1.348 (8) C42—N43 1.345 (4)
C21—C26B 1.358 (8) C42—C46 1.486 (4)
C21—C22A 1.370 (8) N43—C44 1.372 (4)
C21—C26A 1.437 (8) N43—C47 1.464 (4)
C22A—C23A 1.385 (11) C44—C45 1.361 (4)
C22A—H22A 0.9500 C44—H44 0.9500
C23A—C24 1.162 (10) C45—H45 0.9500
C23A—H23A 0.9500 C46—H46A 0.9800
C22B—C23B 1.386 (11) C46—H46B 0.9800
C22B—H22B 0.9500 C46—H46C 0.9800
C23B—C24 1.530 (10) C47—H47A 0.9800
C23B—H23B 0.9500 C47—H47B 0.9800
C24—C25A 1.556 (10) C47—H47C 0.9800
C24—C25B 1.267 (10)
P—Pd—Cl 94.52 (4) C26A—C25A—C24 114.3 (7)
P—Pd—C11 81.51 (10) C26A—C25A—H25A 122.9
C11—Pd—N41 93.91 (12) C24—C25A—H25A 122.9
N41—Pd—Cl 89.88 (8) C25A—C26A—C21 119.7 (7)
C11—Pd—Cl 175.48 (8) C25A—C26A—H26A 120.1
N41—Pd—P 173.55 (8) C21—C26A—H26A 120.1
O2—P—O3 93.7 (2) C26B—C25B—C24 124.5 (7)
O2—P—O1 105.7 (2) C24—C25B—H25B 117.8
O3—P—O1 103.4 (2) C26B—C25B—H25B 117.8
O3—P—Pd 119.78 (9) C21—C26B—C25B 116.9 (7)
O2—P—Pd 124.07 (9) C21—C26B—H26B 121.5
O1—P—Pd 107.73 (9) C25B—C26B—H26B 121.5
C12—O1—P 113.1 (2) C32—C31—C36 122.2 (4)
C21—O2—P 125.1 (2) C32—C31—O3 118.3 (3)
C31—O3—P 119.2 (2) C36—C31—O3 119.4 (3)
C12—C11—C16 115.9 (3) C31—C32—C33 118.4 (4)
C12—C11—Pd 118.3 (2) C31—C32—H32 120.8
C16—C11—Pd 125.8 (2) C33—C32—H32 120.8
C13—C12—C11 123.9 (3) C32—C33—C34 120.9 (4)
C13—C12—O1 117.2 (3) C32—C33—H33 119.5
C11—C12—O1 118.9 (3) C34—C33—H33 119.5
C12—C13—C14 118.4 (3) C35—C34—C33 119.7 (4)
C12—C13—H13 120.8 C35—C34—H34 120.2
C14—C13—H13 120.8 C33—C34—H34 120.2
C15—C14—C13 120.0 (3) C34—C35—C36 120.4 (4)
C15—C14—H14 120.0 C34—C35—H35 119.8
C13—C14—H14 120.0 C36—C35—H35 119.8
C14—C15—C16 120.3 (3) C31—C36—C35 118.4 (4)
C14—C15—H15 119.9 C31—C36—H36 120.8
C16—C15—H15 119.9 C35—C36—H36 120.8
C15—C16—C11 121.5 (3) C42—N41—C45 106.8 (3)
C15—C16—H16 119.2 C42—N41—Pd 124.8 (3)
C11—C16—H16 119.2 C45—N41—Pd 128.1 (3)
C22B—C21—C26B 124.7 (5) N41—C42—N43 109.9 (3)
C22B—C21—O2 116.3 (4) N41—C42—C46 125.5 (3)
C26B—C21—O2 117.5 (4) N43—C42—C46 124.6 (3)
C22A—C21—O2 123.8 (4) C42—N43—C44 108.4 (3)
C26A—C21—O2 117.7 (4) C42—N43—C47 126.7 (3)
C22A—C21—C26A 118.5 (5) C44—N43—C47 124.9 (3)
C21—C22A—C23A 120.6 (7) C45—C44—N43 106.1 (3)
C21—C22A—H22A 119.7 C45—C44—H44 127.0
C23A—C22A—H22A 119.7 N43—C44—H44 127.0
C24—C23A—C22A 123.9 (7) C44—C45—N41 108.8 (3)
C24—C23A—H23A 118.0 C44—C45—H45 125.6
C22A—C23A—H23A 118.0 N41—C45—H45 125.6
C21—C22B—C23B 117.2 (7) C42—C46—H46A 109.5
C21—C22B—H22B 121.4 C42—C46—H46B 109.5
C23B—C22B—H22B 121.4 H46A—C46—H46B 109.5
C22B—C23B—C24 118.6 (7) C42—C46—H46C 109.5
C22B—C23B—H23B 120.7 H46A—C46—H46C 109.5
C24—C23B—H23B 120.7 H46B—C46—H46C 109.5
C23B—C24—C25B 116.2 (5) N43—C47—H47A 109.5
C23A—C24—C25A 122.5 (5) N43—C47—H47B 109.5
C23A—C24—H24 118.7 H47A—C47—H47B 109.5
C25B—C24—H24 118.5 N43—C47—H47C 109.5
C23B—C24—H24 123.3 H47A—C47—H47C 109.5
C25A—C24—H24 118.7 H47B—C47—H47C 109.5
C11—Pd—P—O2 118.0 (2) C26B—C21—C22B—C23B −7.2 (12)
Cl—Pd—P—O2 −64.2 (2) O2—C21—C22B—C23B −173.0 (6)
C11—Pd—P—O3 −123.6 (2) C21—C22B—C23B—C24 −2.3 (12)
Cl—Pd—P—O3 54.2 (1) C22A—C23A—C24—C25A −4.1 (12)
C11—Pd—P—O1 −6.0 (2) C22B—C23B—C24—C25B 12.9 (12)
Cl—Pd—P—O1 171.79 (9) C23A—C24—C25A—C26A 3.6 (9)
O2—P—O1—C12 −129.3 (2) C24—C25A—C26A—C21 2.2 (9)
O3—P—O1—C12 132.9 (2) C22A—C21—C26A—C25A −7.2 (9)
Pd—P—O1—C12 5.2 (2) O2—C21—C26A—C25A 172.6 (6)
O3—P—O2—C21 −167.0 (3) C22B—C21—C26B—C25B 6.3 (9)
O1—P—O2—C21 88.0 (3) O2—C21—C26B—C25B 171.9 (6)
Pd—P—O2—C21 −36.9 (3) C24—C25B—C26B—C21 6.0 (12)
O2—P—O3—C31 −175.5 (2) P—O3—C31—C32 99.1 (3)
O1—P—O3—C31 −68.4 (3) P—O3—C31—C36 −84.2 (3)
Pd—P—O3—C31 51.4 (3) C36—C31—C32—C33 −0.2 (6)
N41—Pd—C11—C12 −168.8 (2) O3—C31—C32—C33 176.3 (4)
P—Pd—C11—C12 6.7 (2) C31—C32—C33—C34 1.1 (8)
N41—Pd—C11—C16 9.0 (3) C32—C33—C34—C35 −1.3 (7)
P—Pd—C11—C16 −175.6 (3) C33—C34—C35—C36 0.5 (6)
C16—C11—C12—C13 −3.1 (5) C32—C31—C36—C35 −0.5 (5)
Pd—C11—C12—C13 174.9 (2) O3—C31—C36—C35 −177.0 (3)
C16—C11—C12—O1 176.5 (3) C34—C35—C36—C31 0.4 (5)
Pd—C11—C12—O1 −5.5 (4) C11—Pd—N41—C42 109.1 (3)
P—O1—C12—C13 179.3 (3) Cl—Pd—N41—C42 −68.4 (3)
P—O1—C12—C11 −0.3 (3) C11—Pd—N41—C45 −77.3 (3)
C11—C12—C13—C14 3.0 (5) Cl—Pd—N41—C45 105.2 (3)
O1—C12—C13—C14 −176.7 (3) C45—N41—C42—N43 −0.2 (4)
C12—C13—C14—C15 −0.7 (5) Pd—N41—C42—N43 174.6 (2)
C13—C14—C15—C16 −1.2 (5) C45—N41—C42—C46 179.0 (3)
C14—C15—C16—C11 1.0 (5) Pd—N41—C42—C46 −6.3 (5)
C12—C11—C16—C15 1.0 (4) N41—C42—N43—C44 0.4 (4)
Pd—C11—C16—C15 −176.8 (2) C46—C42—N43—C44 −178.7 (3)
P—O2—C21—C22B −74.0 (6) N41—C42—N43—C47 178.8 (4)
P—O2—C21—C26B 119.1 (6) C46—C42—N43—C47 −0.3 (6)
P—O2—C21—C22A −109.2 (6) C42—N43—C44—C45 −0.5 (4)
P—O2—C21—C26A 70.9 (6) C47—N43—C44—C45 −179.0 (4)
O2—C21—C22A—C23A −172.8 (6) N43—C44—C45—N41 0.5 (4)
C26A—C21—C22A—C23A 7.0 (12) C42—N41—C45—C44 −0.2 (4)
C21—C22A—C23A—C24 −1.3 (12) Pd—N41—C45—C44 −174.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14···O3i 0.95 2.66 3.365 (4) 132
C15—H15···Cli 0.95 2.80 3.720 (4) 162
C33—H33···Clii 0.95 2.88 3.541 (4) 128
C35—H35···Cliii 0.95 2.89 3.817 (4) 164
C44—H44···Cliv 0.95 2.78 3.651 (4) 154

Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z; (iii) −x+1, −y, −z+1; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5799).

References

  1. Albinati, A., Affolter, S. & Pregosin, P. S. (1990). Organometallics, 9, 379–387.
  2. Aullón, G., Bellamy, D., Brammer, L., Bruton, E. & Orpen, A. G. (1998). Chem. Commun. pp. 653–654.
  3. Błaszczyk, I., Gniewek, A. & Trzeciak, A. M. (2011). J. Organomet. Chem. 696, 3601–3607.
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology New York: Oxford University Press Inc.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Miyaura, N., Yanagi, T. & Suzuki, A. (1981). Synth. Commun. 11, 513–519.
  9. Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.
  10. Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Wrocław, Poland.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sonogashira, K., Tohda, Y. & Nagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812003431/bt5799sup1.cif

e-68-0m227-sup1.cif (33.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003431/bt5799Isup2.hkl

e-68-0m227-Isup2.hkl (245.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES