Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 7;68(Pt 2):o264. doi: 10.1107/S1600536811054766

2-(4,5-Diphenyl-2-p-tolyl-1H-imidazol-1-yl)-3-phenyl­propan-1-ol

Yongmei Xiao a, Liangru Yang a, Kun He a, Jinwei Yuan a, Pu Mao a,*
PMCID: PMC3274963  PMID: 22346908

Abstract

In the title compound, C31H28N2O, the dihedral angles formed by the imidazole ring with the three aryl substituents are 18.52 (8) and 85.56 (7) and 85.57 (7)°, respectively. In the crystal, mol­ecules are linked by O—H⋯N and C—H⋯O hydrogen bonds into chains parallel to the a axis.

Related literature

For the synthesis and properties of chiral ionic liquids, see: Olivier-Bourbigou et al. (2010); Chen et al. (2008); Mao et al. (2010).graphic file with name e-68-0o264-scheme1.jpg

Experimental

Crystal data

  • C31H28N2O

  • M r = 444.55

  • Orthorhombic, Inline graphic

  • a = 9.3413 (7) Å

  • b = 13.7402 (11) Å

  • c = 19.6296 (14) Å

  • V = 2519.5 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 291 K

  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.866, T max = 1.000

  • 9302 measured reflections

  • 4441 independent reflections

  • 4007 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.098

  • S = 1.03

  • 4441 reflections

  • 313 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983); 1887 Friedel pairs

  • Flack parameter: −0.1 (3)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054766/rz2683sup1.cif

e-68-0o264-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054766/rz2683Isup2.hkl

e-68-0o264-Isup2.hkl (217.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054766/rz2683Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 (3) 2.01 (3) 2.825 (2) 174 (3)
C16—H16⋯O1ii 0.93 2.56 3.272 (3) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Natural Science Foundation of P. R. China (Nos. 20902017 and 21172055).

supplementary crystallographic information

Comment

Ionic liquids (ILs) have received considerable interest in the fields of synthesis, analysis and catalysis due to their unique properties (Olivier-Bourbigou et al., 2010). Chiral ionic liquids (CILs) derived from naturally abundant precursors have also attracted much interest (Chen et al., 2008). Our group is interested in the preparation and application of imidazole derived CILs (Mao et al., 2010), and we observed that the condensation reaction between L-phenylalaninol (easily available from L-phenylalanine), dibenzoyl, 4-methylbenzaldehyde and ammonium acetate afforded the title compound, a multi-aryl substituted imidazole derivative containing an appended chiral functionality. The chiral C22 carbon atom maintains the S configuration observed in L-phenylalaninol.

The molecular structure of the title compound is shown in Figure 1. As expected, the imidazole core (N1/C7/C8/N2/C24) is essentially planar. The dihedral angles formed by the imidazole ring with the three aryl substituents are 18.52 (8) (C1–C6), 85.56 (7) (C9–C14) and 85.57 (7)° (C25–C30), respectively. In the crystal structure, molecules are linked by O—H···N and C—H···O hydrogen bonds (Table 1) into chains parallel to the a axis.

Experimental

To a solution of L-phenylalaninol (15.1 g, 0.1 mol) in MeOH (50 ml) in an ice-bath, a molar equivalent of dibenzoyl, 4-methylbenzaldehyde and ammonium acetate were added. The mixture was kept stirring in the ice-bath until all the solids were dissolved before being heated to 60°C for 5 h. The mixture was then cooled to room temperature and the solvent was removed by evaporation. The residue was washed with H2O to obtain the crude product. Crystallization of the crude product in EtOH afforded colourless crystals of the title compound.

Refinement

The hydroxyl H atom was located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.

Crystal data

C31H28N2O F(000) = 944
Mr = 444.55 Dx = 1.172 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ac 2ab Cell parameters from 3569 reflections
a = 9.3413 (7) Å θ = 3.2–67.0°
b = 13.7402 (11) Å µ = 0.55 mm1
c = 19.6296 (14) Å T = 291 K
V = 2519.5 (3) Å3 Prismatic, colourless
Z = 4 0.25 × 0.20 × 0.20 mm

Data collection

Agilent Xcalibur Eos Gemini diffractometer 4441 independent reflections
Radiation source: Enhance (Cu) X-ray Source 4007 reflections with I > 2σ(I)
graphite Rint = 0.027
Detector resolution: 16.2312 pixels mm-1 θmax = 66.9°, θmin = 3.9°
ω scans h = −9→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −16→13
Tmin = 0.866, Tmax = 1.000 l = −21→23
9302 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.1385P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.12 e Å3
4441 reflections Δρmin = −0.13 e Å3
313 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0029 (2)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983); 1887 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.1 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.03250 (17) 0.28449 (11) 0.37156 (10) 0.0793 (5)
N1 0.38409 (17) 0.31434 (10) 0.52389 (7) 0.0523 (3)
N2 0.32181 (16) 0.32519 (10) 0.41559 (7) 0.0479 (3)
C1 0.3733 (2) 0.45666 (14) 0.63052 (9) 0.0622 (5)
H1A 0.3616 0.3912 0.6413 0.075*
C2 0.3881 (3) 0.52437 (18) 0.68230 (11) 0.0786 (6)
H2 0.3855 0.5040 0.7275 0.094*
C3 0.4063 (4) 0.62017 (19) 0.66770 (12) 0.0932 (8)
H3 0.4181 0.6652 0.7026 0.112*
C4 0.4069 (4) 0.64981 (17) 0.60113 (13) 0.1027 (10)
H4 0.4174 0.7155 0.5909 0.123*
C5 0.3922 (3) 0.58302 (15) 0.54886 (11) 0.0797 (7)
H5 0.3933 0.6043 0.5039 0.096*
C6 0.3757 (2) 0.48512 (13) 0.56267 (9) 0.0547 (4)
C7 0.3616 (2) 0.41103 (12) 0.50849 (8) 0.0497 (4)
C8 0.32230 (19) 0.41909 (11) 0.44146 (8) 0.0474 (4)
C9 0.2811 (2) 0.50422 (12) 0.39900 (8) 0.0518 (4)
C10 0.1384 (3) 0.52990 (14) 0.39201 (10) 0.0646 (5)
H10 0.0678 0.4931 0.4133 0.077*
C11 0.1006 (3) 0.61040 (17) 0.35333 (12) 0.0844 (7)
H11 0.0046 0.6273 0.3489 0.101*
C12 0.2033 (4) 0.66518 (16) 0.32168 (13) 0.0948 (9)
H12 0.1776 0.7197 0.2964 0.114*
C13 0.3428 (4) 0.63930 (17) 0.32753 (13) 0.0941 (9)
H13 0.4124 0.6759 0.3054 0.113*
C14 0.3837 (3) 0.55919 (14) 0.36594 (11) 0.0719 (6)
H14 0.4799 0.5425 0.3694 0.086*
C15 0.6439 (3) 0.33594 (17) 0.33126 (13) 0.0782 (6)
H15 0.6546 0.2910 0.3663 0.094*
C16 0.7497 (3) 0.4045 (2) 0.32048 (17) 0.0972 (8)
H16 0.8298 0.4058 0.3486 0.117*
C17 0.7373 (3) 0.4703 (2) 0.26865 (16) 0.0901 (7)
H17 0.8090 0.5160 0.2611 0.108*
C18 0.6186 (3) 0.46844 (18) 0.22809 (12) 0.0836 (7)
H18 0.6088 0.5135 0.1931 0.100*
C19 0.5128 (3) 0.39962 (16) 0.23896 (10) 0.0694 (5)
H19 0.4333 0.3984 0.2105 0.083*
C20 0.5231 (2) 0.33255 (13) 0.29131 (9) 0.0551 (4)
C21 0.4054 (2) 0.25978 (13) 0.30306 (9) 0.0559 (4)
H21A 0.4449 0.2037 0.3265 0.067*
H21B 0.3697 0.2378 0.2593 0.067*
C22 0.2799 (2) 0.29999 (12) 0.34487 (8) 0.0482 (4)
H22 0.2516 0.3611 0.3230 0.058*
C23 0.1490 (2) 0.23495 (13) 0.34372 (9) 0.0562 (4)
H23A 0.1276 0.2161 0.2972 0.067*
H23B 0.1675 0.1763 0.3698 0.067*
C24 0.35972 (19) 0.26487 (12) 0.46788 (8) 0.0478 (4)
C25 0.3693 (2) 0.15676 (12) 0.46470 (8) 0.0505 (4)
C26 0.2543 (3) 0.10109 (16) 0.48526 (13) 0.0757 (6)
H26 0.1712 0.1313 0.5004 0.091*
C27 0.2621 (3) 0.00056 (17) 0.48343 (15) 0.0865 (7)
H27 0.1833 −0.0358 0.4973 0.104*
C28 0.3829 (3) −0.04669 (14) 0.46169 (11) 0.0725 (6)
C29 0.4981 (3) 0.00908 (15) 0.44320 (11) 0.0697 (5)
H29 0.5818 −0.0214 0.4290 0.084*
C30 0.4930 (2) 0.10967 (13) 0.44520 (11) 0.0611 (5)
H30 0.5735 0.1457 0.4333 0.073*
C31 0.3906 (5) −0.15668 (17) 0.45750 (18) 0.1156 (12)
H31A 0.3258 −0.1847 0.4900 0.173*
H31B 0.4864 −0.1777 0.4674 0.173*
H31C 0.3645 −0.1774 0.4125 0.173*
H1 −0.008 (3) 0.2522 (19) 0.4008 (15) 0.090 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0651 (9) 0.0671 (9) 0.1056 (12) 0.0056 (7) 0.0218 (8) 0.0281 (9)
N1 0.0603 (8) 0.0461 (7) 0.0505 (7) 0.0012 (6) −0.0088 (6) 0.0028 (6)
N2 0.0599 (8) 0.0403 (6) 0.0434 (7) 0.0029 (6) 0.0022 (6) 0.0007 (5)
C1 0.0732 (12) 0.0594 (10) 0.0540 (9) 0.0054 (10) −0.0049 (9) −0.0026 (7)
C2 0.1002 (17) 0.0851 (15) 0.0506 (10) 0.0051 (13) −0.0054 (11) −0.0118 (10)
C3 0.135 (2) 0.0790 (15) 0.0656 (13) −0.0143 (16) 0.0045 (14) −0.0287 (11)
C4 0.173 (3) 0.0568 (12) 0.0780 (15) −0.0268 (16) 0.0106 (17) −0.0160 (11)
C5 0.129 (2) 0.0531 (10) 0.0574 (10) −0.0127 (12) 0.0033 (12) −0.0049 (8)
C6 0.0599 (10) 0.0525 (9) 0.0517 (9) 0.0002 (8) −0.0003 (8) −0.0063 (7)
C7 0.0563 (9) 0.0440 (8) 0.0489 (8) −0.0007 (7) 0.0002 (7) −0.0013 (6)
C8 0.0543 (9) 0.0406 (7) 0.0472 (8) 0.0015 (7) 0.0059 (7) −0.0005 (6)
C9 0.0729 (11) 0.0409 (8) 0.0417 (8) 0.0063 (8) 0.0082 (7) −0.0005 (6)
C10 0.0804 (13) 0.0544 (10) 0.0588 (10) 0.0156 (10) 0.0056 (9) 0.0002 (8)
C11 0.116 (2) 0.0647 (12) 0.0726 (13) 0.0359 (14) −0.0086 (13) −0.0029 (11)
C12 0.162 (3) 0.0499 (11) 0.0730 (14) 0.0280 (16) 0.0052 (16) 0.0124 (10)
C13 0.147 (3) 0.0552 (12) 0.0799 (15) −0.0041 (15) 0.0280 (17) 0.0176 (10)
C14 0.0925 (16) 0.0530 (10) 0.0701 (12) −0.0028 (10) 0.0186 (12) 0.0086 (9)
C15 0.0719 (13) 0.0700 (12) 0.0927 (15) 0.0040 (11) −0.0099 (12) 0.0185 (11)
C16 0.0627 (14) 0.0957 (18) 0.133 (2) −0.0085 (14) −0.0198 (15) 0.0150 (17)
C17 0.0751 (15) 0.0857 (16) 0.109 (2) −0.0166 (13) 0.0163 (14) 0.0086 (15)
C18 0.0989 (18) 0.0788 (14) 0.0731 (13) −0.0138 (13) 0.0097 (13) 0.0166 (11)
C19 0.0784 (13) 0.0721 (12) 0.0577 (10) −0.0050 (11) −0.0024 (10) 0.0057 (9)
C20 0.0588 (10) 0.0537 (9) 0.0528 (10) 0.0077 (8) 0.0093 (8) −0.0044 (7)
C21 0.0692 (11) 0.0478 (9) 0.0507 (9) 0.0043 (8) 0.0052 (8) −0.0058 (7)
C22 0.0614 (10) 0.0412 (7) 0.0422 (8) 0.0013 (7) 0.0021 (7) 0.0012 (6)
C23 0.0647 (11) 0.0535 (9) 0.0505 (9) −0.0047 (8) −0.0015 (8) 0.0071 (7)
C24 0.0526 (9) 0.0429 (8) 0.0479 (8) 0.0019 (7) −0.0032 (7) 0.0025 (6)
C25 0.0601 (10) 0.0430 (8) 0.0484 (8) −0.0011 (8) −0.0097 (8) 0.0038 (6)
C26 0.0677 (13) 0.0595 (11) 0.0997 (17) −0.0002 (10) 0.0061 (12) 0.0179 (11)
C27 0.0852 (16) 0.0605 (12) 0.1136 (19) −0.0212 (12) −0.0098 (14) 0.0231 (12)
C28 0.1010 (17) 0.0450 (9) 0.0716 (12) −0.0019 (11) −0.0277 (12) 0.0060 (8)
C29 0.0806 (14) 0.0497 (10) 0.0788 (13) 0.0136 (10) −0.0095 (11) 0.0008 (9)
C30 0.0617 (11) 0.0486 (9) 0.0731 (11) 0.0009 (9) −0.0096 (9) 0.0038 (8)
C31 0.167 (3) 0.0480 (12) 0.131 (3) −0.0091 (17) −0.024 (2) 0.0048 (13)

Geometric parameters (Å, °)

O1—C23 1.395 (3) C15—C16 1.382 (4)
O1—H1 0.82 (3) C15—C20 1.375 (3)
N1—C7 1.379 (2) C16—H16 0.9300
N1—C24 1.312 (2) C16—C17 1.366 (4)
N2—C8 1.387 (2) C17—H17 0.9300
N2—C22 1.483 (2) C17—C18 1.365 (4)
N2—C24 1.366 (2) C18—H18 0.9300
C1—H1A 0.9300 C18—C19 1.384 (3)
C1—C2 1.385 (3) C19—H19 0.9300
C1—C6 1.388 (3) C19—C20 1.383 (3)
C2—H2 0.9300 C20—C21 1.503 (3)
C2—C3 1.358 (4) C21—H21A 0.9700
C3—H3 0.9300 C21—H21B 0.9700
C3—C4 1.369 (4) C21—C22 1.534 (2)
C4—H4 0.9300 C22—H22 0.9800
C4—C5 1.383 (3) C22—C23 1.515 (3)
C5—H5 0.9300 C23—H23A 0.9700
C5—C6 1.381 (3) C23—H23B 0.9700
C6—C7 1.478 (2) C24—C25 1.489 (2)
C7—C8 1.371 (2) C25—C26 1.379 (3)
C8—C9 1.487 (2) C25—C30 1.379 (3)
C9—C10 1.386 (3) C26—H26 0.9300
C9—C14 1.382 (3) C26—C27 1.384 (3)
C10—H10 0.9300 C27—H27 0.9300
C10—C11 1.387 (3) C27—C28 1.370 (4)
C11—H11 0.9300 C28—C29 1.370 (4)
C11—C12 1.368 (4) C28—C31 1.515 (3)
C12—H12 0.9300 C29—H29 0.9300
C12—C13 1.355 (5) C29—C30 1.384 (3)
C13—H13 0.9300 C30—H30 0.9300
C13—C14 1.388 (3) C31—H31A 0.9600
C14—H14 0.9300 C31—H31B 0.9600
C15—H15 0.9300 C31—H31C 0.9600
C23—O1—H1 111.8 (19) C18—C17—H17 120.3
C24—N1—C7 106.80 (13) C17—C18—H18 119.9
C8—N2—C22 124.11 (13) C17—C18—C19 120.2 (2)
C24—N2—C8 106.77 (13) C19—C18—H18 119.9
C24—N2—C22 129.06 (13) C18—C19—H19 119.3
C2—C1—H1A 119.6 C20—C19—C18 121.3 (2)
C2—C1—C6 120.89 (19) C20—C19—H19 119.3
C6—C1—H1A 119.6 C15—C20—C19 117.2 (2)
C1—C2—H2 119.7 C15—C20—C21 122.33 (18)
C3—C2—C1 120.6 (2) C19—C20—C21 120.43 (18)
C3—C2—H2 119.7 C20—C21—H21A 108.8
C2—C3—H3 120.3 C20—C21—H21B 108.8
C2—C3—C4 119.4 (2) C20—C21—C22 113.64 (14)
C4—C3—H3 120.3 H21A—C21—H21B 107.7
C3—C4—H4 119.7 C22—C21—H21A 108.8
C3—C4—C5 120.7 (2) C22—C21—H21B 108.8
C5—C4—H4 119.7 N2—C22—C21 112.53 (15)
C4—C5—H5 119.6 N2—C22—H22 106.3
C6—C5—C4 120.8 (2) N2—C22—C23 111.38 (13)
C6—C5—H5 119.6 C21—C22—H22 106.3
C1—C6—C7 119.66 (16) C23—C22—C21 113.37 (14)
C5—C6—C1 117.68 (17) C23—C22—H22 106.3
C5—C6—C7 122.65 (17) O1—C23—C22 109.65 (15)
N1—C7—C6 119.49 (14) O1—C23—H23A 109.7
C8—C7—N1 109.22 (14) O1—C23—H23B 109.7
C8—C7—C6 131.23 (15) C22—C23—H23A 109.7
N2—C8—C9 121.73 (14) C22—C23—H23B 109.7
C7—C8—N2 106.10 (14) H23A—C23—H23B 108.2
C7—C8—C9 132.14 (15) N1—C24—N2 111.12 (14)
C10—C9—C8 120.32 (17) N1—C24—C25 122.76 (14)
C14—C9—C8 120.90 (18) N2—C24—C25 126.10 (14)
C14—C9—C10 118.77 (18) C26—C25—C24 119.62 (18)
C9—C10—H10 119.9 C30—C25—C24 122.01 (17)
C9—C10—C11 120.1 (2) C30—C25—C26 118.28 (17)
C11—C10—H10 119.9 C25—C26—H26 119.8
C10—C11—H11 119.7 C25—C26—C27 120.4 (2)
C12—C11—C10 120.6 (3) C27—C26—H26 119.8
C12—C11—H11 119.7 C26—C27—H27 119.2
C11—C12—H12 120.3 C28—C27—C26 121.6 (2)
C13—C12—C11 119.4 (2) C28—C27—H27 119.2
C13—C12—H12 120.3 C27—C28—C29 117.69 (18)
C12—C13—H13 119.4 C27—C28—C31 121.9 (3)
C12—C13—C14 121.3 (3) C29—C28—C31 120.4 (3)
C14—C13—H13 119.4 C28—C29—H29 119.2
C9—C14—C13 119.8 (3) C28—C29—C30 121.6 (2)
C9—C14—H14 120.1 C30—C29—H29 119.2
C13—C14—H14 120.1 C25—C30—C29 120.4 (2)
C16—C15—H15 119.2 C25—C30—H30 119.8
C20—C15—H15 119.2 C29—C30—H30 119.8
C20—C15—C16 121.5 (2) C28—C31—H31A 109.5
C15—C16—H16 119.9 C28—C31—H31B 109.5
C17—C16—C15 120.3 (2) C28—C31—H31C 109.5
C17—C16—H16 119.9 H31A—C31—H31B 109.5
C16—C17—H17 120.3 H31A—C31—H31C 109.5
C18—C17—C16 119.4 (2) H31B—C31—H31C 109.5
N1—C7—C8—N2 −0.31 (19) C11—C12—C13—C14 −1.1 (4)
N1—C7—C8—C9 177.69 (18) C12—C13—C14—C9 0.1 (4)
N1—C24—C25—C26 82.9 (2) C14—C9—C10—C11 −1.1 (3)
N1—C24—C25—C30 −93.5 (2) C15—C16—C17—C18 0.7 (5)
N2—C8—C9—C10 84.7 (2) C15—C20—C21—C22 97.1 (2)
N2—C8—C9—C14 −95.4 (2) C16—C15—C20—C19 1.1 (4)
N2—C22—C23—O1 63.07 (19) C16—C15—C20—C21 −178.8 (2)
N2—C24—C25—C26 −95.2 (2) C16—C17—C18—C19 −0.8 (4)
N2—C24—C25—C30 88.4 (2) C17—C18—C19—C20 1.1 (4)
C1—C2—C3—C4 1.4 (5) C18—C19—C20—C15 −1.2 (3)
C1—C6—C7—N1 −17.1 (3) C18—C19—C20—C21 178.7 (2)
C1—C6—C7—C8 159.8 (2) C19—C20—C21—C22 −82.8 (2)
C2—C1—C6—C5 −0.5 (3) C20—C15—C16—C17 −0.9 (5)
C2—C1—C6—C7 179.2 (2) C20—C21—C22—N2 −64.97 (19)
C2—C3—C4—C5 −1.3 (6) C20—C21—C22—C23 167.51 (15)
C3—C4—C5—C6 0.3 (5) C21—C22—C23—O1 −168.81 (14)
C4—C5—C6—C1 0.5 (4) C22—N2—C8—C7 177.67 (16)
C4—C5—C6—C7 −179.1 (3) C22—N2—C8—C9 −0.6 (3)
C5—C6—C7—N1 162.6 (2) C22—N2—C24—N1 −177.41 (16)
C5—C6—C7—C8 −20.5 (3) C22—N2—C24—C25 0.9 (3)
C6—C1—C2—C3 −0.5 (4) C24—N1—C7—C6 177.73 (16)
C6—C7—C8—N2 −177.50 (18) C24—N1—C7—C8 0.2 (2)
C6—C7—C8—C9 0.5 (3) C24—N2—C8—C7 0.34 (19)
C7—N1—C24—N2 0.1 (2) C24—N2—C8—C9 −177.92 (16)
C7—N1—C24—C25 −178.29 (17) C24—N2—C22—C21 −69.1 (2)
C7—C8—C9—C10 −93.1 (3) C24—N2—C22—C23 59.5 (2)
C7—C8—C9—C14 86.8 (2) C24—C25—C26—C27 −179.2 (2)
C8—N2—C22—C21 114.21 (17) C24—C25—C30—C29 179.66 (18)
C8—N2—C22—C23 −117.21 (17) C25—C26—C27—C28 0.3 (4)
C8—N2—C24—N1 −0.3 (2) C26—C25—C30—C29 3.2 (3)
C8—N2—C24—C25 178.03 (17) C26—C27—C28—C29 1.6 (4)
C8—C9—C10—C11 178.86 (17) C26—C27—C28—C31 −178.1 (3)
C8—C9—C14—C13 −178.9 (2) C27—C28—C29—C30 −1.0 (3)
C9—C10—C11—C12 0.1 (3) C28—C29—C30—C25 −1.4 (3)
C10—C9—C14—C13 1.0 (3) C30—C25—C26—C27 −2.7 (3)
C10—C11—C12—C13 1.0 (4) C31—C28—C29—C30 178.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.82 (3) 2.01 (3) 2.825 (2) 174 (3)
C16—H16···O1ii 0.93 2.56 3.272 (3) 133

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2683).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. Chen, X., Li, X., Hu, A. & Wang, F. (2008). Tetrahedron Asymmetry, 19, 1–14.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418–2425.
  6. Olivier-Bourbigou, H., Magna, L. & Morvan, D. (2010). Appl. Catal. A, 373, 1–56.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054766/rz2683sup1.cif

e-68-0o264-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054766/rz2683Isup2.hkl

e-68-0o264-Isup2.hkl (217.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054766/rz2683Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES