Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 7;68(Pt 2):o265. doi: 10.1107/S1600536811054778

3,3′-[(4-Nitro­phen­yl)methyl­ene]bis­(4-hy­droxy-2H-chromen-2-one)

N Ravikumar a, G Gopikrishna a, K Anand Solomon a,*
PMCID: PMC3274964  PMID: 22346909

Abstract

The molecular conformation of the title compound, C25H15NO8, is stabilized by strong intramolecular O—H⋯O hydrogen bonds, resulting in the formation of S 1 1(7) ring motifs. In the crystal, π–π stacking inter­actions are observed between adjacent nitrobenzene and pyranone rings with a centroid–centroid distance of 3.513 (12) Å. The dihedral angles between the nitrobenzene ring and the coumarin ring systems are 65.61 (8) and 66.11 (8)° while the coumarin ring systems are inclined at 65.69 (8)°.

Related literature

For the synthesis of benzyl­idene-bis-(4-hy­droxy­coumarin) derivatives, see: Mehrabi & Abusaidi (2010); Završnik et al. (2011). For hydrogen bonds, see: Desiraju & Steiner (1999). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the biological activity of substituted benzyl­idene-bis-(4-hy­droxy­coumarin) derivatives, see: Borges et al. (2005); Nolan et al. (2009); Prakash et al. (2008); Zhao et al. (1997).graphic file with name e-68-0o265-scheme1.jpg

Experimental

Crystal data

  • C25H15NO8

  • M r = 457.38

  • Orthorhombic, Inline graphic

  • a = 14.0061 (6) Å

  • b = 14.1511 (6) Å

  • c = 10.4179 (4) Å

  • V = 2064.85 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.25 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.902, T max = 0.973

  • 15733 measured reflections

  • 3316 independent reflections

  • 2913 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.089

  • S = 1.04

  • 3316 reflections

  • 310 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054778/rk2323sup1.cif

e-68-0o265-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054778/rk2323Isup2.hkl

e-68-0o265-Isup2.hkl (162.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054778/rk2323Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5 0.82 1.79 2.597 (2) 166
O6—H6A⋯O1 0.82 1.80 2.617 (2) 173

Acknowledgments

The authors thank the Managing Trustee and the Founder Trustee of the Sankar Foundation for their financial support and encouragement. We also acknowledge, the Head, SAIF, IIT-Chennai, for the data collection.

supplementary crystallographic information

Comment

Sevaral methods were reported in the literature (Mehrabi et al. 2010) and (Završnik et al. 2011) for the synthesis of the title compound. Coumarin ring forms an important pharmacophore in several naturally occurring as well as synthetic molecules (Prakash et al. 2008). These coumarin derivaties showed numerous therapeutic applications such as anticoagulant and antibacterial agents (Borges et al. 2005). Several multifunctionalized coumarin derivatives were reported to exhibit anti-HIV properties (Zhao et al. 1997) and also as inhibitors of quinone oxidoreductase-1 (Nolan et al. 2009).

In title compound, C25H15NO8, I, two 4-hydroxycoumarin moieties are linked through a methylene bridge on which one hydrogen atom has been replaced with a phenyl ring bearing p-nitro group (Fig. 1). The 4-hydroxycoumarin moieties are stabilized by intramolecular hydrogen bonding by forming S11(7) ring motifs (Etter et al. 1990) and (Bernstein et al. 1995) between hydroxyl and carbonyl oxygen atoms. The crystal structure of I is stabilized by C–H···O and π–π interactions (Fig. 2). The range of H···O distances (Table 1) found in I agrees with those found for C–H···O hydrogen bonds (Desiraju & Steiner, 1999). The supramolecular chains were extended by π–π-interactions, where the distance between the two centroids namely (C1/O2/C2/C7-C9) and (C20-C25) of the two corresponding coplanar rings is 3.513 (12)Å.

Experimental

The 4-hydroxycoumarin (2 m.mol, 0.324 g) and 4-nitrobenzaldehyde (1 mmol, 0.151 g) were refluxed in ethanol (5 ml) at 333 K for 12 h. After completion of the reaction as monitored by TLC, the reaction mixture was cooled to room temperature. The obtained precipitate was collected by suction filtration and dried. The pure product was obtained by recrystallization from dichloromethane in 92% yield.

Refinement

All H atoms were positioned geometrically. H atoms attached to C atoms were placed in calculated positions with C–H = 0.93Å (aromatic) and C–H = 0.98Å (methine) with Uiso(H) = 1.2Ueq(C) and allowed to ride. The O–H distances were restrained to 0.82Å and refined as riding atoms with Uiso(H) = 1.5Ueq(O) in the final cycles of refinement. The 1539 Friedel pairs were merged during structure refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing diagram of the title compound.

Crystal data

C25H15NO8 F(000) = 944
Mr = 457.38 Dx = 1.471 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 6438 reflections
a = 14.0061 (6) Å θ = 2.1–24.2°
b = 14.1511 (6) Å µ = 0.11 mm1
c = 10.4179 (4) Å T = 295 K
V = 2064.85 (15) Å3 Block, orange
Z = 4 0.35 × 0.30 × 0.25 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 3316 independent reflections
Radiation source: fine-focus sealed tube 2913 reflections with I > 2σ(I)
graphite Rint = 0.030
ω and φ scans θmax = 24.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −15→16
Tmin = 0.902, Tmax = 0.973 k = −16→16
15733 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.1473P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3316 reflections Δρmax = 0.22 e Å3
310 parameters Δρmin = −0.14 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0066 (11)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.65097 (16) 0.52018 (16) 0.9180 (2) 0.0425 (5)
C2 0.67257 (16) 0.67214 (16) 0.8278 (2) 0.0465 (5)
C3 0.73555 (19) 0.7470 (2) 0.8087 (3) 0.0672 (7)
H3 0.7965 0.7461 0.8442 0.081*
C4 0.7053 (2) 0.8221 (2) 0.7359 (4) 0.0817 (9)
H4 0.7464 0.8724 0.7210 0.098*
C5 0.6141 (2) 0.82367 (19) 0.6844 (3) 0.0757 (9)
H5 0.5947 0.8751 0.6353 0.091*
C6 0.55268 (19) 0.75111 (17) 0.7049 (3) 0.0585 (6)
H6 0.4915 0.7531 0.6704 0.070*
C7 0.58132 (16) 0.67400 (16) 0.7773 (2) 0.0455 (5)
C8 0.52015 (15) 0.59312 (15) 0.80351 (19) 0.0412 (5)
C9 0.55171 (14) 0.52169 (14) 0.87827 (19) 0.0374 (5)
C10 0.49380 (14) 0.43608 (14) 0.9198 (2) 0.0377 (5)
H10 0.5301 0.4097 0.9918 0.045*
C11 0.49566 (14) 0.35862 (15) 0.81912 (19) 0.0403 (5)
C12 0.42673 (16) 0.36412 (15) 0.7157 (2) 0.0422 (5)
C13 0.49157 (18) 0.22343 (14) 0.6267 (2) 0.0492 (6)
C14 0.4862 (2) 0.15815 (18) 0.5260 (3) 0.0643 (7)
H14 0.4379 0.1614 0.4650 0.077*
C15 0.5557 (2) 0.08853 (19) 0.5208 (3) 0.0742 (9)
H15 0.5537 0.0436 0.4556 0.089*
C16 0.6277 (2) 0.08488 (19) 0.6106 (3) 0.0698 (8)
H16 0.6742 0.0382 0.6047 0.084*
C17 0.6315 (2) 0.14788 (16) 0.7066 (3) 0.0623 (7)
H17 0.6806 0.1441 0.7665 0.075*
C18 0.56350 (17) 0.21869 (15) 0.7178 (2) 0.0486 (6)
C19 0.56297 (16) 0.29003 (15) 0.8164 (2) 0.0484 (6)
C20 0.39601 (14) 0.45796 (15) 0.9770 (2) 0.0389 (5)
C21 0.37848 (15) 0.54447 (15) 1.0351 (2) 0.0453 (5)
H21 0.4233 0.5926 1.0277 0.054*
C22 0.29604 (17) 0.56044 (17) 1.1036 (2) 0.0516 (6)
H22 0.2853 0.6184 1.1431 0.062*
C23 0.22999 (15) 0.48919 (18) 1.1123 (2) 0.0503 (6)
C24 0.24222 (17) 0.40444 (18) 1.0508 (2) 0.0534 (6)
H24 0.1951 0.3582 1.0537 0.064*
C25 0.32609 (17) 0.38952 (15) 0.9845 (2) 0.0472 (5)
H25 0.3358 0.3318 0.9438 0.057*
N1 0.14454 (16) 0.5031 (2) 1.1934 (2) 0.0652 (6)
O1 0.69024 (11) 0.45293 (11) 0.96905 (17) 0.0531 (4)
O2 0.70638 (10) 0.59589 (11) 0.89430 (15) 0.0509 (4)
O3 0.43458 (11) 0.59699 (11) 0.74979 (15) 0.0502 (4)
H3A 0.4116 0.5438 0.7469 0.075*
O4 0.42395 (12) 0.29414 (11) 0.62710 (16) 0.0528 (4)
O5 0.37047 (12) 0.42867 (11) 0.70029 (16) 0.0515 (4)
O6 0.63447 (12) 0.28370 (12) 0.90099 (19) 0.0663 (5)
H6A 0.6486 0.3367 0.9266 0.099*
O7 0.08403 (15) 0.44080 (18) 1.1938 (3) 0.0931 (7)
O8 0.13895 (14) 0.57467 (17) 1.2562 (2) 0.0814 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0420 (12) 0.0473 (13) 0.0382 (11) 0.0001 (11) 0.0025 (9) −0.0094 (10)
C2 0.0413 (12) 0.0472 (13) 0.0511 (13) −0.0003 (11) 0.0030 (11) −0.0054 (11)
C3 0.0438 (14) 0.0689 (17) 0.089 (2) −0.0088 (13) 0.0035 (14) −0.0068 (16)
C4 0.0630 (19) 0.0618 (17) 0.120 (3) −0.0202 (14) 0.0069 (18) 0.0188 (19)
C5 0.0685 (19) 0.0583 (16) 0.100 (2) −0.0043 (14) 0.0060 (17) 0.0207 (16)
C6 0.0534 (15) 0.0545 (14) 0.0677 (16) 0.0010 (12) 0.0029 (12) 0.0087 (13)
C7 0.0428 (12) 0.0449 (12) 0.0488 (12) −0.0003 (10) 0.0089 (10) −0.0043 (10)
C8 0.0337 (11) 0.0490 (13) 0.0409 (12) 0.0026 (10) 0.0026 (9) −0.0021 (10)
C9 0.0342 (11) 0.0427 (11) 0.0354 (11) 0.0005 (9) 0.0016 (9) −0.0049 (9)
C10 0.0369 (12) 0.0417 (11) 0.0345 (10) 0.0026 (9) −0.0070 (9) 0.0004 (9)
C11 0.0389 (11) 0.0412 (12) 0.0409 (12) −0.0014 (9) 0.0022 (10) 0.0040 (9)
C12 0.0509 (14) 0.0389 (11) 0.0368 (11) −0.0038 (11) 0.0033 (10) 0.0010 (10)
C13 0.0604 (14) 0.0345 (11) 0.0526 (13) −0.0015 (10) 0.0142 (12) 0.0055 (10)
C14 0.0851 (18) 0.0583 (15) 0.0494 (14) −0.0100 (15) 0.0073 (14) −0.0014 (13)
C15 0.112 (3) 0.0490 (15) 0.0616 (18) −0.0094 (16) 0.0349 (18) −0.0098 (13)
C16 0.0773 (19) 0.0537 (15) 0.079 (2) 0.0051 (14) 0.0275 (18) 0.0036 (15)
C17 0.0576 (15) 0.0484 (14) 0.0809 (18) 0.0018 (12) 0.0105 (13) 0.0003 (15)
C18 0.0493 (13) 0.0425 (12) 0.0541 (13) −0.0059 (11) 0.0042 (11) 0.0039 (11)
C19 0.0480 (13) 0.0442 (12) 0.0531 (14) −0.0025 (11) −0.0030 (11) 0.0054 (11)
C20 0.0373 (11) 0.0486 (12) 0.0307 (10) −0.0013 (10) −0.0040 (9) 0.0031 (9)
C21 0.0401 (12) 0.0518 (13) 0.0441 (12) −0.0054 (10) 0.0010 (10) −0.0027 (11)
C22 0.0475 (13) 0.0621 (14) 0.0452 (13) 0.0028 (11) 0.0019 (11) −0.0027 (12)
C23 0.0352 (12) 0.0741 (16) 0.0417 (11) 0.0025 (11) 0.0000 (10) 0.0101 (13)
C24 0.0461 (13) 0.0652 (16) 0.0488 (13) −0.0126 (12) 0.0014 (11) 0.0093 (12)
C25 0.0521 (14) 0.0474 (12) 0.0421 (12) −0.0071 (11) 0.0002 (11) 0.0001 (10)
N1 0.0462 (13) 0.0952 (18) 0.0543 (13) 0.0153 (13) 0.0055 (11) 0.0188 (14)
O1 0.0451 (9) 0.0569 (9) 0.0572 (9) 0.0081 (8) −0.0130 (8) −0.0037 (8)
O2 0.0381 (8) 0.0581 (9) 0.0565 (9) −0.0053 (8) −0.0031 (7) −0.0013 (8)
O3 0.0418 (9) 0.0545 (9) 0.0544 (10) 0.0002 (7) −0.0068 (7) 0.0087 (8)
O4 0.0626 (10) 0.0494 (9) 0.0464 (9) 0.0000 (8) −0.0093 (8) −0.0036 (8)
O5 0.0520 (10) 0.0515 (9) 0.0510 (9) 0.0035 (8) −0.0109 (7) 0.0003 (8)
O6 0.0612 (11) 0.0539 (10) 0.0837 (13) 0.0115 (9) −0.0241 (10) −0.0028 (10)
O7 0.0484 (12) 0.1247 (18) 0.1063 (17) −0.0157 (12) 0.0204 (12) 0.0188 (15)
O8 0.0626 (12) 0.1100 (17) 0.0715 (14) 0.0265 (12) 0.0137 (10) −0.0006 (13)

Geometric parameters (Å, °)

C1—O1 1.221 (3) C13—C14 1.400 (3)
C1—O2 1.346 (3) C14—C15 1.386 (4)
C1—C9 1.451 (3) C14—H14 0.9300
C2—O2 1.367 (3) C15—C16 1.376 (4)
C2—C7 1.382 (3) C15—H15 0.9300
C2—C3 1.393 (3) C16—C17 1.341 (4)
C3—C4 1.373 (4) C16—H16 0.9300
C3—H3 0.9300 C17—C18 1.388 (3)
C4—C5 1.385 (4) C17—H17 0.9300
C4—H4 0.9300 C18—C19 1.440 (3)
C5—C6 1.356 (4) C19—O6 1.337 (3)
C5—H5 0.9300 C20—C25 1.379 (3)
C6—C7 1.386 (3) C20—C21 1.388 (3)
C6—H6 0.9300 C21—C22 1.376 (3)
C7—C8 1.456 (3) C21—H21 0.9300
C8—O3 1.324 (3) C22—C23 1.371 (3)
C8—C9 1.350 (3) C22—H22 0.9300
C9—C10 1.521 (3) C23—C24 1.371 (4)
C10—C11 1.517 (3) C23—N1 1.478 (3)
C10—C20 1.525 (3) C24—C25 1.379 (3)
C10—H10 0.9800 C24—H24 0.9300
C11—C19 1.353 (3) C25—H25 0.9300
C11—C12 1.449 (3) N1—O8 1.209 (3)
C12—O5 1.217 (2) N1—O7 1.223 (3)
C12—O4 1.355 (3) O3—H3A 0.8200
C13—O4 1.378 (3) O6—H6A 0.8200
C13—C18 1.386 (3)
O1—C1—O2 116.14 (19) C15—C14—H14 121.3
O1—C1—C9 124.6 (2) C13—C14—H14 121.3
O2—C1—C9 119.3 (2) C16—C15—C14 120.9 (3)
O2—C2—C7 121.88 (19) C16—C15—H15 119.5
O2—C2—C3 117.0 (2) C14—C15—H15 119.5
C7—C2—C3 121.1 (2) C17—C16—C15 120.8 (3)
C4—C3—C2 118.2 (2) C17—C16—H16 119.6
C4—C3—H3 120.9 C15—C16—H16 119.6
C2—C3—H3 120.9 C16—C17—C18 121.0 (3)
C3—C4—C5 120.8 (3) C16—C17—H17 119.5
C3—C4—H4 119.6 C18—C17—H17 119.5
C5—C4—H4 119.6 C13—C18—C17 118.4 (2)
C6—C5—C4 120.8 (3) C13—C18—C19 116.8 (2)
C6—C5—H5 119.6 C17—C18—C19 124.8 (2)
C4—C5—H5 119.6 O6—C19—C11 123.8 (2)
C5—C6—C7 119.9 (3) O6—C19—C18 114.8 (2)
C5—C6—H6 120.1 C11—C19—C18 121.4 (2)
C7—C6—H6 120.1 C25—C20—C21 117.97 (19)
C2—C7—C6 119.3 (2) C25—C20—C10 121.14 (19)
C2—C7—C8 117.3 (2) C21—C20—C10 120.55 (18)
C6—C7—C8 123.4 (2) C22—C21—C20 121.3 (2)
O3—C8—C9 124.8 (2) C22—C21—H21 119.3
O3—C8—C7 114.90 (19) C20—C21—H21 119.3
C9—C8—C7 120.27 (19) C23—C22—C21 118.7 (2)
C8—C9—C1 119.29 (19) C23—C22—H22 120.7
C8—C9—C10 125.86 (18) C21—C22—H22 120.7
C1—C9—C10 114.72 (18) C24—C23—C22 121.9 (2)
C11—C10—C9 111.69 (17) C24—C23—N1 119.0 (2)
C11—C10—C20 115.59 (16) C22—C23—N1 119.1 (2)
C9—C10—C20 115.37 (17) C23—C24—C25 118.3 (2)
C11—C10—H10 104.2 C23—C24—H24 120.8
C9—C10—H10 104.2 C25—C24—H24 120.8
C20—C10—H10 104.2 C24—C25—C20 121.7 (2)
C19—C11—C12 119.1 (2) C24—C25—H25 119.1
C19—C11—C10 123.00 (18) C20—C25—H25 119.1
C12—C11—C10 117.63 (17) O8—N1—O7 123.9 (2)
O5—C12—O4 116.10 (19) O8—N1—C23 118.2 (2)
O5—C12—C11 124.8 (2) O7—N1—C23 117.9 (3)
O4—C12—C11 119.12 (19) C1—O2—C2 121.44 (17)
O4—C13—C18 122.2 (2) C8—O3—H3A 109.5
O4—C13—C14 116.4 (2) C12—O4—C13 120.87 (19)
C18—C13—C14 121.3 (2) C19—O6—H6A 109.5
C15—C14—C13 117.5 (3)
O2—C2—C3—C4 176.3 (2) O4—C13—C18—C17 −176.8 (2)
C7—C2—C3—C4 −1.3 (4) C14—C13—C18—C17 0.7 (3)
C2—C3—C4—C5 0.8 (5) O4—C13—C18—C19 1.8 (3)
C3—C4—C5—C6 0.0 (5) C14—C13—C18—C19 179.3 (2)
C4—C5—C6—C7 −0.4 (5) C16—C17—C18—C13 −0.5 (4)
O2—C2—C7—C6 −176.6 (2) C16—C17—C18—C19 −179.0 (2)
C3—C2—C7—C6 1.0 (4) C12—C11—C19—O6 174.1 (2)
O2—C2—C7—C8 3.1 (3) C10—C11—C19—O6 −0.3 (3)
C3—C2—C7—C8 −179.3 (2) C12—C11—C19—C18 −4.3 (3)
C5—C6—C7—C2 −0.1 (4) C10—C11—C19—C18 −178.79 (19)
C5—C6—C7—C8 −179.8 (2) C13—C18—C19—O6 −179.0 (2)
C2—C7—C8—O3 −177.99 (19) C17—C18—C19—O6 −0.5 (3)
C6—C7—C8—O3 1.7 (3) C13—C18—C19—C11 −0.4 (3)
C2—C7—C8—C9 2.4 (3) C17—C18—C19—C11 178.1 (2)
C6—C7—C8—C9 −177.9 (2) C11—C10—C20—C25 28.4 (3)
O3—C8—C9—C1 172.24 (19) C9—C10—C20—C25 161.27 (19)
C7—C8—C9—C1 −8.2 (3) C11—C10—C20—C21 −158.45 (19)
O3—C8—C9—C10 −3.4 (3) C9—C10—C20—C21 −25.6 (3)
C7—C8—C9—C10 176.20 (19) C25—C20—C21—C22 3.1 (3)
O1—C1—C9—C8 −168.8 (2) C10—C20—C21—C22 −170.3 (2)
O2—C1—C9—C8 8.8 (3) C20—C21—C22—C23 −0.8 (3)
O1—C1—C9—C10 7.3 (3) C21—C22—C23—C24 −2.7 (3)
O2—C1—C9—C10 −175.05 (17) C21—C22—C23—N1 175.6 (2)
C8—C9—C10—C11 84.8 (2) C22—C23—C24—C25 3.7 (3)
C1—C9—C10—C11 −91.0 (2) N1—C23—C24—C25 −174.5 (2)
C8—C9—C10—C20 −49.9 (3) C23—C24—C25—C20 −1.3 (3)
C1—C9—C10—C20 134.28 (18) C21—C20—C25—C24 −2.0 (3)
C9—C10—C11—C19 89.4 (2) C10—C20—C25—C24 171.3 (2)
C20—C10—C11—C19 −136.0 (2) C24—C23—N1—O8 173.4 (2)
C9—C10—C11—C12 −85.1 (2) C22—C23—N1—O8 −4.9 (3)
C20—C10—C11—C12 49.5 (3) C24—C23—N1—O7 −5.9 (3)
C19—C11—C12—O5 −171.1 (2) C22—C23—N1—O7 175.9 (2)
C10—C11—C12—O5 3.7 (3) O1—C1—O2—C2 174.34 (19)
C19—C11—C12—O4 7.8 (3) C9—C1—O2—C2 −3.5 (3)
C10—C11—C12—O4 −177.41 (17) C7—C2—O2—C1 −2.5 (3)
O4—C13—C14—C15 177.5 (2) C3—C2—O2—C1 179.8 (2)
C18—C13—C14—C15 −0.1 (4) O5—C12—O4—C13 172.42 (19)
C13—C14—C15—C16 −0.8 (4) C11—C12—O4—C13 −6.6 (3)
C14—C15—C16—C17 1.0 (4) C18—C13—O4—C12 1.8 (3)
C15—C16—C17—C18 −0.3 (4) C14—C13—O4—C12 −175.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O5 0.82 1.79 2.597 (2) 166
O6—H6A···O1 0.82 1.80 2.617 (2) 173
C10—H10···O1 0.98 2.34 2.809 (3) 109
C10—H10···O6 0.98 2.49 2.928 (3) 107

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2323).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916. [DOI] [PubMed]
  4. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Desiraju, G. A. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology New York: Oxford University Press Inc
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Mehrabi, H. & Abusaidi, H. (2010). J. Iran. Chem. Soc. 4, 890–894.
  10. Nolan, A. K., Doncaster, R. J., Dunstan, S. M., Scot, A. K., Frenkel, D., Siegel, D., Ross, D., Barnes, J., Levy, C. & Leys, D. (2009). J. Med. Chem. 57, 7142–7156. [DOI] [PubMed]
  11. Prakash, O., Kumar, R. & Prakash, V. (2008). Eur. J. Med. Chem. 43, 435–440. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Završnik, D., Muratović, S., Damjan Makuc, D., Plavec, J., Cetina, M., Nagl, A., Clercq, E. D., Balzarini, J. & Mintas, M. (2011). Molecules, 16, 6023–6040. [DOI] [PMC free article] [PubMed]
  15. Zhao, H., Neamati, N., Hong, H., Mazumder, A., Wang, S., Sunder, S., Milne George, W. A., Pommier, Y. & Burke, T. R. Jr (1997). J. Med. Chem. 40, 242–249. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054778/rk2323sup1.cif

e-68-0o265-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054778/rk2323Isup2.hkl

e-68-0o265-Isup2.hkl (162.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054778/rk2323Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES