Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 7;68(Pt 2):o268–o269. doi: 10.1107/S160053681105519X

4-Meth­oxy­benzamidinium 2,6-dimeth­oxy­benzoate

Gustavo Portalone a,*
PMCID: PMC3274967  PMID: 22346912

Abstract

The title compound, C8H11N2O+·C9H9O4 , was synthesized by the reaction of 4-meth­oxy­benzamidine (4-amidino­anisole) and 2,6-dimeth­oxy­benzoic acid. The structure consists of non-planar pairs of hydrogen-bonded 4-meth­oxy­benzamidinium cations and 2,6-dimeth­oxy­benzoate anions. In the cation, the amidinium group is tilted by 27.94 (10)° with respect to the benzene ring. In the anion, the sterically bulky ortho-meth­oxy substituents force the carb­oxy­ate group to be twisted away from the plane of the benzene ring by 73.24 (6)°. The ions are further associated in the crystal into chains along the b-axis direction by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the biological and pharmacological relevance of benzamidine, see: Marquart et al. (1983); Sprang et al. (1987); Bode et al. (1990); Powers & Harper (1999); Grzesiak et al. (2000). For the structure of benzamidine, see: Barker et al. (1996). For supra­molecular association in proton-transfer adducts containing benzamidinium cations, see; Papoutsakis et al. (1999); Portalone (2008, 2010). For the structure of benzdiamidine, see: Jokić et al. (2001). For the ortho­rhom­bic and tetra­gonal polymorphs of 2,6-dimeth­oxy­benzoic acid, see: Swaminathan et al. (1976); Bryan & White (1982); Portalone (2009, 2011). For the analysis of benzene ring deformations induced by substitution, see: Schultz et al. (1993); Portalone et al. (1998); For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999). graphic file with name e-68-0o268-scheme1.jpg

Experimental

Crystal data

  • C8H11N2O+·C9H9O4

  • M r = 332.35

  • Monoclinic, Inline graphic

  • a = 12.6594 (3) Å

  • b = 9.6754 (2) Å

  • c = 13.7923 (4) Å

  • β = 99.241 (2)°

  • V = 1667.42 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.25 mm

Data collection

  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.971, T max = 0.976

  • 76316 measured reflections

  • 4217 independent reflections

  • 3914 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.131

  • S = 1.17

  • 4217 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681105519X/rz2691sup1.cif

e-68-0o268-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681105519X/rz2691Isup2.hkl

e-68-0o268-Isup2.hkl (202.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681105519X/rz2691Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.93 (2) 1.84 (2) 2.7576 (18) 169 (2)
N1—H1B⋯O2i 0.88 (2) 1.91 (2) 2.7166 (18) 152 (2)
N2—H2B⋯O1ii 0.86 (3) 2.31 (2) 2.868 (2) 123 (2)
N2—H2A⋯O2 0.91 (3) 2.08 (3) 2.976 (2) 170 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

This Laboratory is currently engaged in the systematic structural analysis of molecular salts of benzamidine (Portalone, 2008, 2010). Benzamidine is a strong Lewis base and its cation can be easily anchored onto numerous inorganic and organic anions and polyanions, largely because of the presence of four potential donor sites for hydrogen-bonding. Consequently, benzamidinium ions appear to be very promising building blocks in supramolecular chemistry as multiple hydrogen bonding donor. Benzamidine has biological and pharmacological relevance (Powers & Harper, 1999; Grzesiak et al., 2000). Its cation has also been included in a number of protein structures (Marquart et al., 1983; Sprang et al., 1987; Bode et al., 1990).

The asymmetric unit of the title compound comprises a non-planar R22(8) hydrogen-bonded pair formed by one 4-methoxybenzamidinium cation and one 2,6-dimethoxybenzoate anion (Fig. 1). In the anion, the o-methoxy substituents force the carboxy group to be twisted away from the plane of the phenyl ring by 73.24 (6)°. The C—O distances of the carboxylate group range from 1.2440 (18) to 1.2509 (18) Å, indicating the delocalization of the negative charge. The pattern of bond lengths and bond angles of the phenyl ring is consistent with that reported in the structure determination of the two polymorphs of 2,6-dimethoxybenzoic acid (Swaminathan et al., 1976; Bryan & White, 1982; Portalone, 2009, 2011), and a comparison of the present results with those obtained for similar benzene derivatives in the gas phase (Schultz et al., 1993; Portalone et al., 1998) shows no appreciable effects of the crystal environment on the ring deformation induced by substituents. In the cation, the amidinium group forms a dihedral angle of 27.94 (10)° with the phenyl ring, which is close to the values observed in neutral benzamidine (22.8°, Barker et al., 1996) as well as in protonated benzamidinium (20.7°, Papoutsakis et al., 1999; 28.5 and 31.9°, Portalone, 2008, 2010) and benzdiamidine (24.5°, Jokić et al., 2001). The lack of planarity in all these systems is obviously caused by steric hindrances between the H atoms of the aromatic ring and the amidine moiety. The pattern of bond lengths and bond angles of the benzamidinium cation agrees with that reported in previous structural investigations (Papoutsakis et al., 1999; Portalone, 2008, 2010). In particular the amidinium group, true to one's expectations, features similar C-N bonds [1.299 (2) and 1.316 (2) Å], evidencing the delocalization of the π electrons and double-bond character.

Analysis of the crystal packing (Fig. 2) shows that the pairs are associated in the crystal by extensive hydrogen bonding. Those pairs of cations and anions are joined by intermolecular R44(8) N—H···O interactions (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999) (Table 1) leading to a chain structure running along the b direction.

Experimental

The title compound was formed during cocrystallization in a 1:1 molar ratio of 2,6-dimethoxybenzoic acid (1 mmol, Aldrich at 98% purity) and 4-methoxybenzamidine (1 mmol, Fluka at 96% purity). The two components were dissolved in water (10 ml) and gently heated under reflux for 3 h. After cooling the solution to an ambient temperature, colourless crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent after two weeks.

Refinement

The amine H atoms were located in a difference Fourier map and refined freely. All other H atoms could be identified in difference Fourier maps, but were placed in calculated positions, with C—H = 0.97 Å (phenyl) and 0.99 Å (methyl), and refined as riding on their carrier atoms. The Uiso values were kept equal to 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing displacements ellipsoids drawn the 50% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Crystal packing diagram for the title compound. Displacements ellipsoids are at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding (dashed lines) have been omitted.

Crystal data

C8H11N2O+·C9H9O4 F(000) = 704
Mr = 332.35 Dx = 1.324 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 41031 reflections
a = 12.6594 (3) Å θ = 2.9–34.8°
b = 9.6754 (2) Å µ = 0.10 mm1
c = 13.7923 (4) Å T = 298 K
β = 99.241 (2)° Tablets, colourless
V = 1667.42 (7) Å3 0.30 × 0.30 × 0.25 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur S CCD diffractometer 4217 independent reflections
Radiation source: Enhance (Mo) X-ray source 3914 reflections with I > 2σ(I)
graphite Rint = 0.026
Detector resolution: 16.0696 pixels mm-1 θmax = 28.5°, θmin = 2.9°
ω and φ scans h = −16→16
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) k = −12→12
Tmin = 0.971, Tmax = 0.976 l = −18→18
76316 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.878P] where P = (Fo2 + 2Fc2)/3
4217 reflections (Δ/σ)max < 0.001
239 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.29 (release 10-06-2008 CrysAlis171 .NET) (compiled Jun 10 2008,16:49:55) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O5 0.10799 (10) −0.11594 (17) −0.24016 (10) 0.0540 (4)
N1 0.44446 (13) −0.09706 (15) 0.15597 (11) 0.0413 (4)
H1A 0.4973 (17) −0.110 (2) 0.2099 (16) 0.049 (6)*
H1B 0.4294 (17) −0.011 (2) 0.1385 (15) 0.045 (5)*
N2 0.39964 (14) −0.32294 (16) 0.15666 (14) 0.0467 (4)
H2A 0.442 (2) −0.329 (3) 0.2161 (19) 0.063 (7)*
H2B 0.3761 (19) −0.396 (3) 0.1250 (18) 0.059 (7)*
C1 0.31657 (12) −0.17948 (16) 0.02049 (11) 0.0303 (3)
C2 0.33754 (13) −0.07531 (19) −0.04288 (12) 0.0376 (4)
H2 0.4006 −0.0181 −0.0250 0.045*
C3 0.27065 (13) −0.0509 (2) −0.13109 (13) 0.0408 (4)
H3 0.2871 0.0216 −0.1749 0.049*
C4 0.17991 (13) −0.13163 (19) −0.15559 (12) 0.0375 (4)
C5 0.15748 (13) −0.2361 (2) −0.09328 (14) 0.0426 (4)
H5 0.0939 −0.2924 −0.1109 0.051*
C6 0.22544 (13) −0.26050 (18) −0.00599 (13) 0.0388 (4)
H6 0.2096 −0.3344 0.0370 0.047*
C7 0.38977 (12) −0.20070 (15) 0.11435 (12) 0.0316 (3)
C17 0.12111 (18) 0.0003 (3) −0.30073 (15) 0.0591 (6)
H17A 0.1146 (14) 0.0864 (14) −0.2636 (7) 0.089*
H17B 0.0653 (12) −0.0014 (10) −0.3597 (11) 0.089*
H17C 0.1925 (12) −0.0034 (10) −0.3209 (11) 0.089*
O1 0.61718 (10) −0.11290 (12) 0.30539 (9) 0.0400 (3)
O2 0.55414 (10) −0.31629 (12) 0.34359 (10) 0.0421 (3)
O3 0.63894 (11) −0.06691 (15) 0.52149 (10) 0.0517 (4)
O4 0.78817 (10) −0.40567 (14) 0.34411 (9) 0.0447 (3)
C8 0.71797 (11) −0.23514 (15) 0.43547 (11) 0.0276 (3)
C9 0.72422 (14) −0.15283 (17) 0.51889 (12) 0.0366 (4)
C10 0.81319 (17) −0.1596 (2) 0.59275 (14) 0.0523 (5)
H10 0.8165 −0.1042 0.6518 0.063*
C11 0.89636 (15) −0.2462 (2) 0.58046 (15) 0.0524 (5)
H11 0.9593 −0.2491 0.6308 0.063*
C12 0.89261 (13) −0.3286 (2) 0.49875 (13) 0.0425 (4)
H12 0.9522 −0.3885 0.4914 0.051*
C13 0.80189 (12) −0.32480 (16) 0.42671 (11) 0.0315 (3)
C14 0.62180 (11) −0.22199 (15) 0.35457 (10) 0.0270 (3)
C15 0.62678 (17) −0.0059 (2) 0.61327 (15) 0.0523 (5)
H15A 0.6294 (13) −0.0783 (10) 0.6634 (8) 0.078*
H15B 0.5577 (11) 0.0421 (16) 0.6066 (3) 0.078*
H15C 0.6849 (11) 0.0606 (15) 0.6329 (7) 0.078*
C16 0.86484 (16) −0.5108 (2) 0.33788 (14) 0.0477 (5)
H16A 0.9338 (10) −0.4683 (6) 0.3302 (11) 0.071*
H16B 0.8399 (7) −0.5704 (12) 0.2808 (10) 0.071*
H16C 0.8742 (9) −0.5669 (13) 0.3984 (9) 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O5 0.0399 (7) 0.0729 (10) 0.0426 (7) −0.0057 (7) −0.0136 (6) −0.0001 (7)
N1 0.0484 (8) 0.0244 (7) 0.0428 (8) 0.0029 (6) −0.0181 (7) 0.0010 (6)
N2 0.0499 (9) 0.0259 (7) 0.0573 (10) 0.0001 (6) −0.0121 (8) 0.0043 (7)
C1 0.0278 (7) 0.0275 (7) 0.0339 (7) 0.0028 (6) −0.0002 (6) −0.0054 (6)
C2 0.0279 (7) 0.0432 (9) 0.0391 (9) −0.0068 (7) −0.0025 (6) 0.0002 (7)
C3 0.0344 (8) 0.0496 (10) 0.0363 (8) −0.0056 (7) −0.0002 (6) 0.0046 (7)
C4 0.0280 (7) 0.0481 (10) 0.0340 (8) 0.0026 (7) −0.0022 (6) −0.0077 (7)
C5 0.0310 (8) 0.0456 (10) 0.0478 (10) −0.0105 (7) −0.0042 (7) −0.0070 (8)
C6 0.0371 (8) 0.0335 (8) 0.0440 (9) −0.0063 (7) 0.0005 (7) −0.0015 (7)
C7 0.0307 (7) 0.0247 (7) 0.0372 (8) 0.0049 (6) −0.0013 (6) −0.0019 (6)
C17 0.0533 (12) 0.0791 (16) 0.0397 (10) 0.0039 (11) −0.0081 (8) 0.0063 (10)
O1 0.0410 (6) 0.0318 (6) 0.0416 (6) −0.0013 (5) −0.0104 (5) 0.0114 (5)
O2 0.0363 (6) 0.0267 (6) 0.0568 (8) −0.0032 (5) −0.0126 (5) 0.0046 (5)
O3 0.0525 (8) 0.0551 (8) 0.0425 (7) 0.0201 (6) −0.0072 (6) −0.0171 (6)
O4 0.0446 (7) 0.0508 (7) 0.0354 (6) 0.0217 (6) −0.0034 (5) −0.0049 (5)
C8 0.0273 (7) 0.0251 (7) 0.0279 (7) −0.0004 (5) −0.0027 (5) 0.0048 (5)
C9 0.0378 (8) 0.0331 (8) 0.0356 (8) 0.0037 (6) −0.0043 (6) −0.0027 (6)
C10 0.0547 (11) 0.0540 (12) 0.0405 (10) 0.0065 (9) −0.0154 (8) −0.0128 (9)
C11 0.0418 (10) 0.0579 (12) 0.0486 (11) 0.0046 (9) −0.0204 (8) −0.0008 (9)
C12 0.0302 (8) 0.0475 (10) 0.0459 (10) 0.0094 (7) −0.0052 (7) 0.0060 (8)
C13 0.0310 (7) 0.0326 (8) 0.0295 (7) 0.0035 (6) −0.0001 (6) 0.0054 (6)
C14 0.0272 (7) 0.0237 (7) 0.0281 (7) 0.0064 (5) −0.0018 (5) −0.0015 (5)
C15 0.0532 (11) 0.0604 (12) 0.0452 (10) 0.0034 (9) 0.0133 (9) −0.0112 (9)
C16 0.0494 (10) 0.0501 (11) 0.0445 (10) 0.0213 (9) 0.0103 (8) 0.0032 (8)

Geometric parameters (Å, °)

O5—C4 1.3680 (19) O1—C14 1.2509 (18)
O5—C17 1.427 (3) O2—C14 1.2440 (18)
N1—C7 1.299 (2) O3—C9 1.368 (2)
N1—H1A 0.93 (2) O3—C15 1.427 (2)
N1—H1B 0.88 (2) O4—C13 1.370 (2)
N2—C7 1.316 (2) O4—C16 1.418 (2)
N2—H2A 0.91 (3) C8—C9 1.391 (2)
N2—H2B 0.86 (3) C8—C13 1.392 (2)
C1—C2 1.387 (2) C8—C14 1.5189 (18)
C1—C6 1.394 (2) C9—C10 1.394 (2)
C1—C7 1.480 (2) C10—C11 1.377 (3)
C2—C3 1.386 (2) C10—H10 0.9700
C2—H2 0.9700 C11—C12 1.375 (3)
C3—C4 1.386 (2) C11—H11 0.9700
C3—H3 0.9700 C12—C13 1.393 (2)
C4—C5 1.385 (3) C12—H12 0.9700
C5—C6 1.383 (2) C15—H15A 0.9817
C5—H5 0.9700 C15—H15B 0.9817
C6—H6 0.9700 C15—H15C 0.9817
C17—H17A 0.9877 C16—H16A 0.9865
C17—H17B 0.9877 C16—H16B 0.9865
C17—H17C 0.9877 C16—H16C 0.9865
C4—O5—C17 117.56 (15) C13—O4—C16 117.61 (13)
C7—N1—H1A 120.8 (13) C9—C8—C13 119.07 (13)
C7—N1—H1B 122.1 (14) C9—C8—C14 119.47 (13)
H1A—N1—H1B 116.8 (19) C13—C8—C14 121.43 (13)
C7—N2—H2A 117.3 (16) O3—C9—C8 115.43 (13)
C7—N2—H2B 120.8 (16) O3—C9—C10 123.91 (16)
H2A—N2—H2B 121 (2) C8—C9—C10 120.65 (16)
C2—C1—C6 118.52 (14) C11—C10—C9 118.85 (17)
C2—C1—C7 119.69 (14) C11—C10—H10 120.6
C6—C1—C7 121.78 (15) C9—C10—H10 120.6
C3—C2—C1 121.67 (15) C12—C11—C10 121.83 (16)
C3—C2—H2 119.2 C12—C11—H11 119.1
C1—C2—H2 119.2 C10—C11—H11 119.1
C4—C3—C2 118.91 (16) C11—C12—C13 119.02 (16)
C4—C3—H3 120.5 C11—C12—H12 120.5
C2—C3—H3 120.5 C13—C12—H12 120.5
O5—C4—C5 115.80 (15) O4—C13—C8 115.57 (13)
O5—C4—C3 123.89 (17) O4—C13—C12 123.92 (15)
C5—C4—C3 120.31 (15) C8—C13—C12 120.52 (15)
C6—C5—C4 120.24 (15) O2—C14—O1 125.56 (13)
C6—C5—H5 119.9 O2—C14—C8 118.88 (13)
C4—C5—H5 119.9 O1—C14—C8 115.54 (13)
C5—C6—C1 120.34 (16) O3—C15—H15A 109.5
C5—C6—H6 119.8 O3—C15—H15B 109.5
C1—C6—H6 119.8 H15A—C15—H15B 109.5
N1—C7—N2 119.47 (15) O3—C15—H15C 109.5
N1—C7—C1 119.60 (14) H15A—C15—H15C 109.5
N2—C7—C1 120.93 (15) H15B—C15—H15C 109.5
O5—C17—H17A 109.5 O4—C16—H16A 109.5
O5—C17—H17B 109.5 O4—C16—H16B 109.5
H17A—C17—H17B 109.5 H16A—C16—H16B 109.5
O5—C17—H17C 109.5 O4—C16—H16C 109.5
H17A—C17—H17C 109.5 H16A—C16—H16C 109.5
H17B—C17—H17C 109.5 H16B—C16—H16C 109.5
C9—O3—C15 118.21 (14)
C6—C1—C2—C3 −0.2 (3) C14—C8—C9—O3 1.5 (2)
C7—C1—C2—C3 −179.38 (16) C13—C8—C9—C10 0.1 (3)
C1—C2—C3—C4 0.9 (3) C14—C8—C9—C10 −177.89 (17)
C17—O5—C4—C5 172.81 (18) O3—C9—C10—C11 −177.5 (2)
C17—O5—C4—C3 −7.5 (3) C8—C9—C10—C11 1.9 (3)
C2—C3—C4—O5 179.46 (17) C9—C10—C11—C12 −1.8 (3)
C2—C3—C4—C5 −0.8 (3) C10—C11—C12—C13 −0.3 (3)
O5—C4—C5—C6 179.86 (17) C16—O4—C13—C8 −172.11 (15)
C3—C4—C5—C6 0.1 (3) C16—O4—C13—C12 8.1 (3)
C4—C5—C6—C1 0.6 (3) C9—C8—C13—O4 177.88 (15)
C2—C1—C6—C5 −0.5 (3) C14—C8—C13—O4 −4.2 (2)
C7—C1—C6—C5 178.64 (16) C9—C8—C13—C12 −2.3 (2)
C2—C1—C7—N1 27.6 (2) C14—C8—C13—C12 175.68 (15)
C6—C1—C7—N1 −151.54 (17) C11—C12—C13—O4 −177.78 (17)
C2—C1—C7—N2 −152.93 (18) C11—C12—C13—C8 2.4 (3)
C6—C1—C7—N2 27.9 (2) C9—C8—C14—O2 −107.53 (17)
C15—O3—C9—C8 164.66 (17) C13—C8—C14—O2 74.5 (2)
C15—O3—C9—C10 −15.9 (3) C9—C8—C14—O1 71.0 (2)
C13—C8—C9—O3 179.53 (15) C13—C8—C14—O1 −106.91 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.93 (2) 1.84 (2) 2.7576 (18) 169 (2)
N1—H1B···O2i 0.88 (2) 1.91 (2) 2.7166 (18) 152 (2)
N2—H2B···O1ii 0.86 (3) 2.31 (2) 2.868 (2) 123 (2)
N2—H2A···O2 0.91 (3) 2.08 (3) 2.976 (2) 170 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2691).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Barker, J., Phillips, P. R., Wallbridge, M. G. H. & Powell, H. R. (1996). Acta Cryst. C52, 2617–2619.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bode, W., Turk, D. & Stürzebecher, J. (1990). Eur. J. Biochem. 193, 175–180. [DOI] [PubMed]
  5. Bryan, R. F. & White, D. H. (1982). Acta Cryst. B38, 1014–1016.
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Grzesiak, A., Helland, R., Smalas, A. O., Krowarsch, D., Dadlez, M. & Otlewski, J. (2000). J. Mol. Biol. 301, 205–217. [DOI] [PubMed]
  10. Jokić, M., Bajić, M., Žinić, M., Perić, B. & Kojić-Prodić, B. (2001). Acta Cryst. C57, 1354–1355. [DOI] [PubMed]
  11. Marquart, M., Walter, J., Deisenhofer, J., Bode, W. & Huber, R. (1983). Acta Cryst. B39, 480–490.
  12. Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056. [DOI] [PubMed]
  13. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  14. Papoutsakis, D., Kirby, J. P., Jackson, J. E. & Nocera, D. G. (1999). Chem. Eur. J. 5, 1474–1480.
  15. Portalone, G. (2008). Acta Cryst. E64, o1282–o1283. [DOI] [PMC free article] [PubMed]
  16. Portalone, G. (2009). Acta Cryst. E65, o327–o328. [DOI] [PMC free article] [PubMed]
  17. Portalone, G. (2010). Acta Cryst. C66, o295–o301. [DOI] [PubMed]
  18. Portalone, G. (2011). Acta Cryst. E67, o3394–o3395. [DOI] [PMC free article] [PubMed]
  19. Portalone, G., Ramondo, F., Domenicano, A. & Hargittai, I. (1998). J. Organomet. Chem. 560, 183–190.
  20. Powers, J. C. & Harper, J. W. (1999). Proteinase inhibitors, edited by A. J. Barrett & G. Salvesen, pp. 55–152. Amsterdam: Elsevier.
  21. Schultz, Gy., Nagy, T., Portalone, G., Ramondo, F., Hargittai, I. & Domenicano, A. (1993). Struct. Chem. 4, 183–190.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Sprang, S., Standing, T., Fletterick, R. J., Strong, R. M., Finer-Moor, J., Xuong, N. H., Hamlin, N. R., Rutter, W. & Kreik, C. S. (1987). Science, 237, 905–909. [DOI] [PubMed]
  24. Swaminathan, S., Vimala, T. M. & Lotter, H. (1976). Acta Cryst. B32, 1897–1900.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681105519X/rz2691sup1.cif

e-68-0o268-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681105519X/rz2691Isup2.hkl

e-68-0o268-Isup2.hkl (202.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681105519X/rz2691Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES