Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 7;68(Pt 2):o280. doi: 10.1107/S1600536811054547

1,5-Bis[(2-meth­oxy­eth­oxy)meth­yl]-1,5-naphthyridine-4,8(1H,5H)-dione

Kunyan Wang a, Chen Chen a, Peng Jiang a, Lu Shi a, Hong-Jun Zhu a,*
PMCID: PMC3274977  PMID: 22346922

Abstract

The complete mol­ecule of the title compound, C16H22N2O6, is generated by crystallographic inversion symmetry. The conformation of the N—C—O—C fragment of the side chain is approximately gauche [torsion angle = −74.84 (17)°]. In the crystal, weak C—H⋯O inter­actions link the mol­ecules.

Related literature

The background to the applications of the title compound, see: Shan et al. (2005). For the synthesis, see: Toshihiro et al. (2002). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-68-0o280-scheme1.jpg

Experimental

Crystal data

  • C16H22N2O6

  • M r = 338.36

  • Monoclinic, Inline graphic

  • a = 7.1610 (14) Å

  • b = 11.497 (2) Å

  • c = 10.734 (2) Å

  • β = 105.45 (3)°

  • V = 851.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.970, T max = 0.990

  • 3261 measured reflections

  • 1549 independent reflections

  • 1246 reflections with I > 2σ(I)

  • R int = 0.047

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.140

  • S = 1.01

  • 1549 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054547/hb6550sup1.cif

e-68-0o280-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054547/hb6550Isup2.hkl

e-68-0o280-Isup2.hkl (76.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054547/hb6550Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.93 2.45 3.264 (2) 147
C6—H6A⋯O1ii 0.93 2.58 3.397 (2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Experimental

The title compound was prepared by a method reported in literature (Toshihiro et al., 2002). Colourless blocks were obtained by dissolving it (0.5 g) in methanol (50 ml) and evaporating the solvent slowly at room temperature for about 30 d.

Refinement

H atoms were positioned geometrically and refined as riding groups, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C16H22N2O6 F(000) = 360
Mr = 338.36 Dx = 1.319 Mg m3
Monoclinic, P21/n Melting point: 365 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 7.1610 (14) Å Cell parameters from 25 reflections
b = 11.497 (2) Å θ = 9–13°
c = 10.734 (2) Å µ = 0.10 mm1
β = 105.45 (3)° T = 293 K
V = 851.8 (3) Å3 Block, colourless
Z = 2 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1246 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.047
graphite θmax = 25.3°, θmin = 2.7°
ω/2θ scans h = 0→8
Absorption correction: ψ scan (North et al., 1968) k = −13→13
Tmin = 0.970, Tmax = 0.990 l = −12→12
3261 measured reflections 3 standard reflections every 200 reflections
1549 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.1P)2 + 0.026P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
1549 reflections Δρmax = 0.24 e Å3
110 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.30 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.03696 (18) 0.64646 (11) 0.57178 (12) 0.0421 (4)
O1 0.25472 (18) 1.00854 (10) 0.36603 (13) 0.0584 (4)
C1 0.2858 (3) 1.0712 (2) 0.2607 (2) 0.0781 (7)
H1A 0.2389 1.1492 0.2623 0.117*
H1B 0.2177 1.0341 0.1815 0.117*
H1C 0.4219 1.0729 0.2665 0.117*
O2 0.06007 (17) 0.80910 (9) 0.43882 (11) 0.0532 (4)
C5 0.1950 (2) 0.62630 (14) 0.67339 (15) 0.0479 (5)
H5A 0.2437 0.6875 0.7292 0.057*
C2 0.3185 (3) 0.89321 (17) 0.3692 (2) 0.0658 (6)
H2B 0.4581 0.8917 0.3836 0.079*
H2C 0.2603 0.8560 0.2869 0.079*
C3 0.2645 (3) 0.82888 (15) 0.4743 (2) 0.0639 (6)
H3A 0.3325 0.7551 0.4890 0.077*
H3B 0.3014 0.8736 0.5537 0.077*
O3 0.32189 (18) 0.33513 (10) 0.62397 (14) 0.0672 (5)
C4 −0.0118 (2) 0.77036 (13) 0.54011 (17) 0.0494 (5)
H4A −0.1514 0.7797 0.5165 0.059*
H4B 0.0419 0.8177 0.6160 0.059*
C6 0.2837 (2) 0.52236 (14) 0.69674 (16) 0.0489 (5)
H6A 0.3860 0.5132 0.7704 0.059*
C7 0.2259 (2) 0.42641 (13) 0.61247 (15) 0.0449 (4)
C8 0.0437 (2) 0.44520 (12) 0.50952 (13) 0.0380 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0493 (7) 0.0351 (7) 0.0376 (7) −0.0011 (5) 0.0041 (5) −0.0016 (5)
O1 0.0678 (8) 0.0436 (7) 0.0690 (9) 0.0043 (5) 0.0273 (7) 0.0064 (5)
C1 0.0727 (13) 0.0781 (15) 0.0928 (16) 0.0075 (11) 0.0385 (12) 0.0289 (12)
O2 0.0602 (8) 0.0402 (6) 0.0513 (7) −0.0052 (5) 0.0012 (6) 0.0059 (5)
C5 0.0557 (9) 0.0440 (9) 0.0374 (9) −0.0068 (7) 0.0009 (7) −0.0030 (6)
C2 0.0697 (11) 0.0493 (11) 0.0836 (14) 0.0087 (9) 0.0291 (10) 0.0052 (9)
C3 0.0577 (11) 0.0523 (11) 0.0756 (13) 0.0029 (8) 0.0071 (9) 0.0127 (9)
O3 0.0602 (8) 0.0429 (7) 0.0812 (10) 0.0086 (5) −0.0114 (7) 0.0018 (6)
C4 0.0565 (9) 0.0341 (8) 0.0532 (10) 0.0014 (7) 0.0066 (7) −0.0044 (7)
C6 0.0490 (9) 0.0464 (9) 0.0413 (9) −0.0051 (7) −0.0054 (7) 0.0051 (7)
C7 0.0459 (9) 0.0396 (8) 0.0446 (9) 0.0003 (7) 0.0040 (7) 0.0083 (7)
C8 0.0442 (8) 0.0341 (8) 0.0346 (8) −0.0035 (6) 0.0086 (6) 0.0034 (6)

Geometric parameters (Å, °)

N1—C5 1.366 (2) C2—H2B 0.9700
N1—C8i 1.3919 (19) C2—H2C 0.9700
N1—C4 1.4843 (19) C3—H3A 0.9700
O1—C2 1.400 (2) C3—H3B 0.9700
O1—C1 1.407 (2) O3—C7 1.2426 (18)
C1—H1A 0.9600 C4—H4A 0.9700
C1—H1B 0.9600 C4—H4B 0.9700
C1—H1C 0.9600 C6—C7 1.417 (2)
O2—C4 1.394 (2) C6—H6A 0.9300
O2—C3 1.429 (2) C7—C8 1.484 (2)
C5—C6 1.345 (2) C8—N1i 1.3919 (19)
C5—H5A 0.9300 C8—C8i 1.398 (3)
C2—C3 1.484 (3)
C5—N1—C8i 119.30 (13) O2—C3—H3A 109.8
C5—N1—C4 116.10 (13) C2—C3—H3A 109.8
C8i—N1—C4 123.37 (13) O2—C3—H3B 109.8
C2—O1—C1 112.60 (16) C2—C3—H3B 109.8
O1—C1—H1A 109.5 H3A—C3—H3B 108.2
O1—C1—H1B 109.5 O2—C4—N1 111.85 (13)
H1A—C1—H1B 109.5 O2—C4—H4A 109.2
O1—C1—H1C 109.5 N1—C4—H4A 109.2
H1A—C1—H1C 109.5 O2—C4—H4B 109.2
H1B—C1—H1C 109.5 N1—C4—H4B 109.2
C4—O2—C3 114.06 (14) H4A—C4—H4B 107.9
C6—C5—N1 123.30 (15) C5—C6—C7 121.98 (14)
C6—C5—H5A 118.3 C5—C6—H6A 119.0
N1—C5—H5A 118.3 C7—C6—H6A 119.0
O1—C2—C3 109.96 (17) O3—C7—C6 122.30 (14)
O1—C2—H2B 109.7 O3—C7—C8 123.39 (14)
C3—C2—H2B 109.7 C6—C7—C8 114.30 (13)
O1—C2—H2C 109.7 N1i—C8—C8i 119.73 (16)
C3—C2—H2C 109.7 N1i—C8—C7 119.50 (13)
H2B—C2—H2C 108.2 C8i—C8—C7 120.73 (16)
O2—C3—C2 109.45 (16)
C8i—N1—C5—C6 2.9 (3) N1—C5—C6—C7 3.7 (3)
C4—N1—C5—C6 −164.78 (16) C5—C6—C7—O3 170.47 (16)
C1—O1—C2—C3 −174.45 (17) C5—C6—C7—C8 −8.8 (2)
C4—O2—C3—C2 −167.81 (14) O3—C7—C8—N1i 6.6 (2)
O1—C2—C3—O2 72.0 (2) C6—C7—C8—N1i −174.16 (14)
C3—O2—C4—N1 −74.84 (17) O3—C7—C8—C8i −171.19 (18)
C5—N1—C4—O2 97.84 (16) C6—C7—C8—C8i 8.1 (2)
C8i—N1—C4—O2 −69.31 (19)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5A···O3ii 0.93 2.45 3.264 (2) 147
C6—H6A···O1iii 0.93 2.58 3.397 (2) 147

Symmetry codes: (ii) −x+1/2, y+1/2, −z+3/2; (iii) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6550).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1994). CAD-4 Express. Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Shan, J., Yap, G. P. A. & Richeson, D. S. (2005). Can. J. Chem. 83, 958–968.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Toshihiro, T., Takashi, T. & Aoyama, Y. (2002). J. Am. Chem. Soc. 124, 12453–12462.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054547/hb6550sup1.cif

e-68-0o280-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054547/hb6550Isup2.hkl

e-68-0o280-Isup2.hkl (76.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054547/hb6550Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES