Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 7;68(Pt 2):o281. doi: 10.1107/S1600536811054419

4-{2-[4-(Dimethyl­amino)­phen­yl]ethen­yl}-1-methyl­pyridinium 3,5-dicarb­oxy­benzene­sulfonate methanol monosolvate

Liang Li a, Huijuan Cui a, Zhou Yang a,*, Xutang Tao b, Huai Yang a
PMCID: PMC3274978  PMID: 22346923

Abstract

In the crystal structure of the title solvated salt, C16H19N2 +·C8H5O7S·CH3OH, the anions and the methanol solvent mol­ecules are linked by O—H⋯O hydrogen bonds. The cations and anions are packed as alternate layers parallel to (11Inline graphic). The crystal structure is further stabilized by a π–π inter­action between the pyridinium and benzene rings of the cations, with a centroid–centroid distance of 3.5492 (4) Å.

Related literature

The title compound was synthesized as part of our continuing research on the nonlinear optical properties of DAS (4-N,N-dimethyl­amino-4′-N′-methyl­stilbazolium) derivatives. For the synthesis, see: Okada et al. (1990). For background to non-linear optical materials, see: Bosshard et al. (1995); Nalwa & Miyata (1997); Yang, Mutter et al. (2007); Ruiz et al. (2006). For the effects of different substituents of benzene sulfonate on its non-linear optical properties, see: Okada et al. (2003); Yang, Wörle et al. (2007); Ogawa et al. (2008), Yang et al. (2005). For standard bond-lengths, see: Allen et al. (1987).graphic file with name e-68-0o281-scheme1.jpg

Experimental

Crystal data

  • C16H19N2 +·C8H5O7S·CH4O

  • M r = 516.55

  • Triclinic, Inline graphic

  • a = 7.5277 (12) Å

  • b = 10.5517 (17) Å

  • c = 16.467 (3) Å

  • α = 106.750 (7)°

  • β = 97.504 (8)°

  • γ = 100.273 (8)°

  • V = 1209.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.45 × 0.31 × 0.22 mm

Data collection

  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) T min = 0.629, T max = 1.000

  • 15622 measured reflections

  • 5523 independent reflections

  • 5192 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.116

  • S = 1.13

  • 5523 reflections

  • 332 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054419/ez2270sup1.cif

e-68-0o281-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054419/ez2270Isup2.hkl

e-68-0o281-Isup2.hkl (270.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054419/ez2270Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536811054419/ez2270Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6i 0.84 1.89 2.6796 (18) 156
O4—H4A⋯O8ii 0.84 1.79 2.6156 (18) 168
O8—H8⋯O7iii 0.84 1.86 2.6897 (18) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation (grant No. 50803005), the Fundamental Research Funds for the Central Universities, the Scientific Research Foundation for Returned Overseas Chinese Scholars and the National Natural Science Fund for Distinguished Young Scholars (grant No. 51025313).

supplementary crystallographic information

Comment

During the last three decades, nonlinear optical materials have been of considerable interest for their potential applications such as frequency conversion, electro-optic modulation and THz generation (Bosshard et al., 1995; Nalwa & Miyata, 1997; Yang, Mutter et al., 2007). In order to create efficient NLO materials, both the molecular and bulk properties must be optimized (Yang et al., 2005; Ruiz et al., 2006; Yang, Wörle et al., 2007). The title compound was synthesized as part of our continuing research on the nonlinear optical properties of DAS (4-N, N-dimethylamino-4'-N'-methyl-stilbazolium) derivatives.

Fig. 1 illustrates the molecular structure of the title compound together with the atomic numbering scheme. The unit cell of the title compound contains two asymmetric units, each consisting of one C16H19N2+ cation, one C8H5O7S- anion and one methanol molecule. The bond distances and angles in both the cation and anion are in normal ranges (Allen et al., 1987). In the crystal structure, atoms O4, O6, O7 and O8 of the anion are involved in O—H···O interactions. The cations and anions are stacked in a parallel manner and form alternating layers parallel to the (112) plane. The crystal structure is further stabilized by a π···π interaction between the pyridinium and C3–C8 benzene rings with a centroid–centroid distance of 3.5492 (4) Å, which combine with the intermolecular O—H···O interactions to form a three-dimensional network.

Experimental

4-{2-[4-(Dimethylamino)phenyl]ethenyl}-1-methylpyridinium 3,5-dicarboxybenzenesulfonate was prepared by the metathesization of 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium iodide (Okada et al., 1990) with the sodium salt of the 3,5-dicarboxybenzenesulfonic acid. The title compound was then recrystallized from methanol to get high purity material for crystal growth. 4-{2-[4-(Dimethylamino)phenyl]ethenyl}-1-methylpyridinium 3,5-dicarboxybenzenesulfonate: yield 72%; 1H-NMR (400 MHz, DMSO-d6): 8.67 (d, 2H, J= 6.8Hz, C5H4N), 8.39 (s, 1H, C6H3SO3-), 8.34 (d, 2H, C6H3SO3-), 8.03(d, 2H, J= 6.8Hz, C5H4N), 7.91 (d, 1H, J= 16.0Hz, CH), 7.59(d, 2H, J= 8.4Hz, C6H3SO3-), 7.17 (d, 1H, J= 16.0Hz, CH), 6.79 (d, 2H, J= 8.8Hz, C6H4), 4.16 (s, 3H, NMe), 3.01 (s, 6H, NMe2). C, H, N analysis calcd. for C24H24N2O7S: C 59.49, H 4.99, N 5.78; found: C 59.39, H 5.02, N 5.79. Crystals were obtained by slow cooling method from 45°C to room temperature in methanol.

Refinement

All H atoms were located geometrically (methyl C-H = 0.98 Å, aromatic C-H = 0.95Å and O-H = 0.84 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom numbering scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A packing diagram of the title compound showing the hydrogen bonds as dashed lines.

Crystal data

C16H19N2+·C8H5O7S·CH4O Z = 2
Mr = 516.55 F(000) = 544
Triclinic, P1 Dx = 1.419 Mg m3
a = 7.5277 (12) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.5517 (17) Å Cell parameters from 4222 reflections
c = 16.467 (3) Å θ = 1.3–27.5°
α = 106.750 (7)° µ = 0.19 mm1
β = 97.504 (8)° T = 173 K
γ = 100.273 (8)° Block, red
V = 1209.2 (3) Å3 0.45 × 0.31 × 0.22 mm

Data collection

Rigaku Saturn724+ CCD diffractometer 5523 independent reflections
Radiation source: fine-focus sealed tube 5192 reflections with I > 2σ(I)
graphite Rint = 0.037
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 2.8°
ω scans at fixed χ = 45° h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) k = −13→13
Tmin = 0.629, Tmax = 1.000 l = −21→21
15622 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.4666P] where P = (Fo2 + 2Fc2)/3
5523 reflections (Δ/σ)max = 0.001
332 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.38860 (5) 0.41490 (4) 0.77513 (3) 0.02588 (12)
O1 0.1455 (2) 0.37615 (12) 0.99887 (8) 0.0390 (3)
H1 0.2036 0.3798 1.0470 0.059*
O2 0.1780 (2) 0.16194 (13) 0.96041 (8) 0.0420 (3)
O3 −0.09373 (18) −0.12371 (12) 0.64695 (8) 0.0350 (3)
O4 −0.28863 (18) −0.04200 (13) 0.57227 (8) 0.0346 (3)
H4A −0.2926 −0.1141 0.5327 0.052*
O5 −0.55084 (17) 0.36035 (13) 0.80299 (9) 0.0374 (3)
O6 −0.28648 (18) 0.54879 (12) 0.83184 (8) 0.0347 (3)
O7 −0.42469 (17) 0.41121 (12) 0.68482 (8) 0.0332 (3)
O8 0.2880 (2) 0.24475 (14) 0.56382 (8) 0.0436 (4)
H8 0.3854 0.2890 0.5993 0.065*
N1 0.3505 (2) −0.25772 (15) 0.60065 (10) 0.0338 (3)
N2 0.9237 (2) 0.38403 (14) 1.25311 (10) 0.0313 (3)
C1 0.4220 (3) −0.37550 (19) 0.56160 (13) 0.0406 (4)
H1C 0.3964 −0.4424 0.5918 0.061*
H1A 0.5552 −0.3472 0.5662 0.061*
H1B 0.3626 −0.4162 0.5006 0.061*
C2 0.2606 (3) −0.1979 (2) 0.54209 (12) 0.0401 (4)
H2B 0.3443 −0.1152 0.5424 0.060*
H2A 0.1488 −0.1752 0.5610 0.060*
H2C 0.2280 −0.2631 0.4835 0.060*
C3 0.4215 (2) −0.18111 (16) 0.68546 (11) 0.0261 (3)
C4 0.3830 (2) −0.05246 (17) 0.72159 (11) 0.0281 (3)
H4 0.3044 −0.0190 0.6870 0.034*
C5 0.4577 (2) 0.02533 (16) 0.80627 (11) 0.0271 (3)
H5 0.4301 0.1116 0.8288 0.033*
C6 0.5736 (2) −0.02072 (16) 0.85963 (11) 0.0271 (3)
C7 0.6059 (2) −0.15028 (17) 0.82433 (11) 0.0297 (4)
H7 0.6799 −0.1853 0.8599 0.036*
C8 0.5340 (2) −0.22835 (16) 0.73985 (11) 0.0297 (4)
H8A 0.5606 −0.3151 0.7180 0.036*
C9 0.6622 (2) 0.05654 (17) 0.94810 (11) 0.0290 (4)
H9 0.7296 0.0107 0.9785 0.035*
C10 0.6608 (2) 0.18460 (17) 0.99228 (11) 0.0296 (4)
H10 0.5937 0.2334 0.9642 0.036*
C11 0.7569 (2) 0.25224 (17) 1.08083 (11) 0.0282 (3)
C12 0.7411 (2) 0.38370 (18) 1.12496 (12) 0.0325 (4)
H12 0.6721 0.4299 1.0956 0.039*
C13 0.8239 (2) 0.44591 (18) 1.20961 (12) 0.0333 (4)
H13 0.8107 0.5347 1.2384 0.040*
C14 0.9459 (3) 0.25904 (18) 1.21244 (12) 0.0351 (4)
H14 1.0186 0.2166 1.2432 0.042*
C15 0.8659 (2) 0.19230 (17) 1.12795 (12) 0.0333 (4)
H15 0.8840 0.1044 1.1006 0.040*
C16 1.0116 (3) 0.4516 (2) 1.34462 (12) 0.0421 (5)
H16B 0.9368 0.5113 1.3731 0.063*
H16C 1.1346 0.5056 1.3485 0.063*
H16A 1.0221 0.3828 1.3732 0.063*
C17 0.1147 (2) 0.25092 (16) 0.94444 (11) 0.0280 (3)
C18 −0.1751 (2) −0.03581 (16) 0.64270 (10) 0.0256 (3)
C19 −0.0110 (2) 0.23178 (16) 0.86173 (10) 0.0242 (3)
C20 −0.1150 (2) 0.32637 (15) 0.85514 (10) 0.0242 (3)
H20 −0.1007 0.4069 0.9023 0.029*
C21 −0.2395 (2) 0.30264 (15) 0.77944 (10) 0.0231 (3)
C22 −0.2594 (2) 0.18634 (15) 0.70939 (10) 0.0241 (3)
H22 −0.3434 0.1714 0.6574 0.029*
C23 −0.1550 (2) 0.09165 (15) 0.71595 (10) 0.0236 (3)
C24 −0.0322 (2) 0.11394 (16) 0.79225 (10) 0.0248 (3)
H24 0.0373 0.0487 0.7970 0.030*
C25 0.1596 (3) 0.19091 (19) 0.60747 (12) 0.0368 (4)
H25A 0.1064 0.0948 0.5753 0.055*
H25C 0.0616 0.2410 0.6118 0.055*
H25B 0.2218 0.1996 0.6656 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0280 (2) 0.02105 (19) 0.0269 (2) 0.00778 (15) −0.00144 (16) 0.00678 (15)
O1 0.0533 (8) 0.0281 (6) 0.0274 (6) 0.0160 (6) −0.0121 (6) 0.0009 (5)
O2 0.0555 (8) 0.0343 (7) 0.0324 (7) 0.0236 (6) −0.0088 (6) 0.0042 (5)
O3 0.0403 (7) 0.0317 (6) 0.0295 (6) 0.0159 (5) 0.0021 (5) 0.0017 (5)
O4 0.0414 (7) 0.0339 (7) 0.0227 (6) 0.0112 (6) −0.0017 (5) 0.0020 (5)
O5 0.0325 (7) 0.0365 (7) 0.0499 (8) 0.0159 (5) 0.0121 (6) 0.0171 (6)
O6 0.0427 (7) 0.0219 (6) 0.0335 (7) 0.0094 (5) −0.0085 (6) 0.0055 (5)
O7 0.0386 (7) 0.0299 (6) 0.0284 (6) 0.0083 (5) −0.0059 (5) 0.0101 (5)
O8 0.0445 (8) 0.0437 (8) 0.0262 (6) −0.0102 (6) 0.0031 (6) 0.0001 (6)
N1 0.0385 (8) 0.0296 (7) 0.0305 (8) 0.0129 (6) 0.0022 (6) 0.0042 (6)
N2 0.0292 (7) 0.0294 (7) 0.0306 (8) 0.0019 (6) 0.0038 (6) 0.0064 (6)
C1 0.0514 (12) 0.0325 (9) 0.0338 (10) 0.0152 (8) 0.0048 (9) 0.0027 (8)
C2 0.0436 (11) 0.0466 (11) 0.0281 (9) 0.0186 (9) 0.0003 (8) 0.0065 (8)
C3 0.0260 (8) 0.0239 (8) 0.0274 (8) 0.0048 (6) 0.0058 (7) 0.0069 (6)
C4 0.0286 (8) 0.0272 (8) 0.0318 (9) 0.0102 (7) 0.0061 (7) 0.0123 (7)
C5 0.0296 (8) 0.0230 (7) 0.0304 (8) 0.0079 (6) 0.0096 (7) 0.0081 (6)
C6 0.0276 (8) 0.0269 (8) 0.0280 (8) 0.0048 (6) 0.0079 (7) 0.0106 (6)
C7 0.0327 (9) 0.0301 (8) 0.0303 (9) 0.0107 (7) 0.0057 (7) 0.0135 (7)
C8 0.0356 (9) 0.0229 (8) 0.0337 (9) 0.0106 (7) 0.0096 (7) 0.0101 (7)
C9 0.0304 (9) 0.0297 (8) 0.0295 (9) 0.0072 (7) 0.0074 (7) 0.0126 (7)
C10 0.0294 (9) 0.0298 (8) 0.0323 (9) 0.0080 (7) 0.0067 (7) 0.0130 (7)
C11 0.0261 (8) 0.0284 (8) 0.0300 (9) 0.0032 (6) 0.0085 (7) 0.0095 (7)
C12 0.0320 (9) 0.0296 (8) 0.0368 (9) 0.0092 (7) 0.0046 (7) 0.0118 (7)
C13 0.0320 (9) 0.0267 (8) 0.0389 (10) 0.0072 (7) 0.0067 (8) 0.0066 (7)
C14 0.0360 (10) 0.0310 (9) 0.0374 (10) 0.0089 (7) 0.0017 (8) 0.0114 (7)
C15 0.0385 (10) 0.0257 (8) 0.0345 (9) 0.0098 (7) 0.0058 (8) 0.0071 (7)
C16 0.0416 (11) 0.0423 (11) 0.0315 (10) 0.0009 (9) 0.0004 (8) 0.0034 (8)
C17 0.0295 (8) 0.0271 (8) 0.0267 (8) 0.0116 (7) 0.0024 (7) 0.0057 (6)
C18 0.0243 (8) 0.0284 (8) 0.0229 (8) 0.0049 (6) 0.0049 (6) 0.0070 (6)
C19 0.0246 (8) 0.0247 (7) 0.0233 (8) 0.0066 (6) 0.0040 (6) 0.0075 (6)
C20 0.0266 (8) 0.0209 (7) 0.0240 (8) 0.0051 (6) 0.0039 (6) 0.0062 (6)
C21 0.0229 (7) 0.0216 (7) 0.0261 (8) 0.0057 (6) 0.0044 (6) 0.0094 (6)
C22 0.0238 (8) 0.0256 (8) 0.0226 (7) 0.0050 (6) 0.0030 (6) 0.0082 (6)
C23 0.0237 (7) 0.0238 (7) 0.0230 (8) 0.0051 (6) 0.0061 (6) 0.0067 (6)
C24 0.0261 (8) 0.0250 (7) 0.0251 (8) 0.0096 (6) 0.0056 (6) 0.0080 (6)
C25 0.0352 (10) 0.0354 (9) 0.0347 (10) 0.0039 (8) 0.0056 (8) 0.0062 (8)

Geometric parameters (Å, °)

S1—O5 1.4427 (13) C7—C8 1.375 (2)
S1—O6 1.4572 (12) C7—H7 0.9500
S1—O7 1.4643 (13) C8—H8A 0.9500
S1—C21 1.7801 (16) C9—C10 1.340 (2)
O1—C17 1.325 (2) C9—H9 0.9500
O1—H1 0.8400 C10—C11 1.449 (2)
O2—C17 1.203 (2) C10—H10 0.9500
O3—C18 1.212 (2) C11—C12 1.402 (2)
O4—C18 1.326 (2) C11—C15 1.406 (2)
O4—H4A 0.8400 C12—C13 1.364 (3)
O8—C25 1.412 (2) C12—H12 0.9500
O8—H8 0.8400 C13—H13 0.9500
N1—C3 1.375 (2) C14—C15 1.364 (3)
N1—C1 1.455 (2) C14—H14 0.9500
N1—C2 1.456 (2) C15—H15 0.9500
N2—C13 1.345 (2) C16—H16B 0.9800
N2—C14 1.347 (2) C16—H16C 0.9800
N2—C16 1.473 (2) C16—H16A 0.9800
C1—H1C 0.9800 C17—C19 1.493 (2)
C1—H1A 0.9800 C18—C23 1.494 (2)
C1—H1B 0.9800 C19—C20 1.393 (2)
C2—H2B 0.9800 C19—C24 1.394 (2)
C2—H2A 0.9800 C20—C21 1.388 (2)
C2—H2C 0.9800 C20—H20 0.9500
C3—C8 1.406 (2) C21—C22 1.390 (2)
C3—C4 1.414 (2) C22—C23 1.396 (2)
C4—C5 1.380 (2) C22—H22 0.9500
C4—H4 0.9500 C23—C24 1.392 (2)
C5—C6 1.402 (2) C24—H24 0.9500
C5—H5 0.9500 C25—H25A 0.9800
C6—C7 1.401 (2) C25—H25C 0.9800
C6—C9 1.449 (2) C25—H25B 0.9800
O5—S1—O6 114.32 (8) C12—C11—C15 116.21 (16)
O5—S1—O7 113.04 (8) C12—C11—C10 120.18 (16)
O6—S1—O7 111.46 (7) C15—C11—C10 123.60 (16)
O5—S1—C21 105.50 (7) C13—C12—C11 120.71 (17)
O6—S1—C21 106.09 (7) C13—C12—H12 119.6
O7—S1—C21 105.58 (7) C11—C12—H12 119.6
C17—O1—H1 109.5 N2—C13—C12 121.34 (16)
C18—O4—H4A 109.5 N2—C13—H13 119.3
C25—O8—H8 109.5 C12—C13—H13 119.3
C3—N1—C1 119.25 (15) N2—C14—C15 121.23 (17)
C3—N1—C2 119.96 (15) N2—C14—H14 119.4
C1—N1—C2 116.88 (15) C15—C14—H14 119.4
C13—N2—C14 119.76 (16) C14—C15—C11 120.71 (16)
C13—N2—C16 120.98 (16) C14—C15—H15 119.6
C14—N2—C16 119.25 (16) C11—C15—H15 119.6
N1—C1—H1C 109.5 N2—C16—H16B 109.5
N1—C1—H1A 109.5 N2—C16—H16C 109.5
H1C—C1—H1A 109.5 H16B—C16—H16C 109.5
N1—C1—H1B 109.5 N2—C16—H16A 109.5
H1C—C1—H1B 109.5 H16B—C16—H16A 109.5
H1A—C1—H1B 109.5 H16C—C16—H16A 109.5
N1—C2—H2B 109.5 O2—C17—O1 123.90 (16)
N1—C2—H2A 109.5 O2—C17—C19 123.72 (15)
H2B—C2—H2A 109.5 O1—C17—C19 112.37 (13)
N1—C2—H2C 109.5 O3—C18—O4 123.48 (15)
H2B—C2—H2C 109.5 O3—C18—C23 123.32 (15)
H2A—C2—H2C 109.5 O4—C18—C23 113.19 (14)
N1—C3—C8 121.18 (15) C20—C19—C24 119.86 (15)
N1—C3—C4 121.36 (15) C20—C19—C17 120.65 (14)
C8—C3—C4 117.45 (15) C24—C19—C17 119.37 (14)
C5—C4—C3 121.16 (15) C21—C20—C19 119.82 (14)
C5—C4—H4 119.4 C21—C20—H20 120.1
C3—C4—H4 119.4 C19—C20—H20 120.1
C4—C5—C6 121.17 (15) C20—C21—C22 120.65 (14)
C4—C5—H5 119.4 C20—C21—S1 119.61 (12)
C6—C5—H5 119.4 C22—C21—S1 119.54 (12)
C7—C6—C5 117.35 (15) C21—C22—C23 119.52 (15)
C7—C6—C9 118.11 (15) C21—C22—H22 120.2
C5—C6—C9 124.54 (15) C23—C22—H22 120.2
C8—C7—C6 122.09 (16) C24—C23—C22 120.01 (14)
C8—C7—H7 119.0 C24—C23—C18 118.89 (14)
C6—C7—H7 119.0 C22—C23—C18 121.09 (14)
C7—C8—C3 120.72 (15) C23—C24—C19 120.12 (15)
C7—C8—H8A 119.6 C23—C24—H24 119.9
C3—C8—H8A 119.6 C19—C24—H24 119.9
C10—C9—C6 128.01 (16) O8—C25—H25A 109.5
C10—C9—H9 116.0 O8—C25—H25C 109.5
C6—C9—H9 116.0 H25A—C25—H25C 109.5
C9—C10—C11 123.11 (16) O8—C25—H25B 109.5
C9—C10—H10 118.4 H25A—C25—H25B 109.5
C11—C10—H10 118.4 H25C—C25—H25B 109.5
C1—N1—C3—C8 −12.7 (3) C10—C11—C15—C14 −176.93 (16)
C2—N1—C3—C8 −169.80 (16) O2—C17—C19—C20 163.92 (17)
C1—N1—C3—C4 167.82 (16) O1—C17—C19—C20 −14.8 (2)
C2—N1—C3—C4 10.8 (3) O2—C17—C19—C24 −12.2 (3)
N1—C3—C4—C5 −178.64 (15) O1—C17—C19—C24 169.03 (15)
C8—C3—C4—C5 1.9 (2) C24—C19—C20—C21 0.2 (2)
C3—C4—C5—C6 −0.3 (3) C17—C19—C20—C21 −175.99 (15)
C4—C5—C6—C7 −1.9 (2) C19—C20—C21—C22 −1.2 (2)
C4—C5—C6—C9 177.82 (16) C19—C20—C21—S1 173.64 (12)
C5—C6—C7—C8 2.5 (2) O5—S1—C21—C20 −89.52 (14)
C9—C6—C7—C8 −177.17 (15) O6—S1—C21—C20 32.14 (15)
C6—C7—C8—C3 −1.0 (3) O7—S1—C21—C20 150.54 (13)
N1—C3—C8—C7 179.29 (16) O5—S1—C21—C22 85.32 (14)
C4—C3—C8—C7 −1.2 (2) O6—S1—C21—C22 −153.02 (13)
C7—C6—C9—C10 174.95 (17) O7—S1—C21—C22 −34.61 (14)
C5—C6—C9—C10 −4.7 (3) C20—C21—C22—C23 1.0 (2)
C6—C9—C10—C11 −179.27 (15) S1—C21—C22—C23 −173.75 (12)
C9—C10—C11—C12 −176.31 (16) C21—C22—C23—C24 0.0 (2)
C9—C10—C11—C15 2.3 (3) C21—C22—C23—C18 178.81 (14)
C15—C11—C12—C13 −1.9 (3) O3—C18—C23—C24 2.3 (2)
C10—C11—C12—C13 176.88 (16) O4—C18—C23—C24 −176.68 (14)
C14—N2—C13—C12 1.1 (3) O3—C18—C23—C22 −176.44 (16)
C16—N2—C13—C12 −179.62 (17) O4—C18—C23—C22 4.5 (2)
C11—C12—C13—N2 0.5 (3) C22—C23—C24—C19 −1.0 (2)
C13—N2—C14—C15 −1.2 (3) C18—C23—C24—C19 −179.82 (14)
C16—N2—C14—C15 179.51 (17) C20—C19—C24—C23 0.9 (2)
N2—C14—C15—C11 −0.3 (3) C17—C19—C24—C23 177.13 (15)
C12—C11—C15—C14 1.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O6i 0.84 1.89 2.6796 (18) 156.
O4—H4A···O8ii 0.84 1.79 2.6156 (18) 168.
O8—H8···O7iii 0.84 1.86 2.6897 (18) 169.

Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, −y, −z+1; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2270).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach.
  3. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  4. Nalwa, H. S. & Miyata, S. (1997). Editors. Nonlinear Optics of Organic Molecules and Polymers Boca Raton: CRC Press.
  5. Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.
  6. Okada, S., Masaki, I., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R. & Otsuka, M. (1990). Jpn J. Appl. Phys. 29, 1112–1115.
  7. Okada, S., Nogi, K., Anwar, Tsuji, K., Duan X. M., Oikawa, H., Matsuda, H. & Nakanishi H. (2003). Jpn J. Appl. Phys. 42, 668–671.
  8. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  9. Ruiz, B., Yang, Z., Gramlich, V., Jazbinsek, M. & Günter, P. (2006). J. Mater. Chem. 16, 2839–2842.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Yang, Z., Aravazhi, S., Schneider, A., Seiler, P., Jazbinsek, M. & Günter, P. (2005). Adv. Funct. Mater. 15, 1072–1075.
  12. Yang, Z., Mutter, L., Ruiz, B., Aravazhi, S., Stillhart, M., Jazbinsek, M., Gramlich, V. & Günter, P. (2007). Adv. Funct. Mater. 17, 2018–2023.
  13. Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 7, 83–86.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054419/ez2270sup1.cif

e-68-0o281-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054419/ez2270Isup2.hkl

e-68-0o281-Isup2.hkl (270.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054419/ez2270Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536811054419/ez2270Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES