Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 7;68(Pt 2):o282. doi: 10.1107/S160053681105536X

O,O′-Diisopropyl S-[2-(benzene­sulfon­amido)­eth­yl]phospho­rodithio­ate

Hai-Feng Wu a,*, Xin-Yi Liu a, Fan-Hua Zhang a, Yun-Xiao He a
PMCID: PMC3274979  PMID: 22346924

Abstract

The mol­ecular conformation of the title compound, C14H24NO4PS3, the selective herbicide bensulide, is stabilized by a weak intra­molecular C—H⋯S inter­action. In the crystal, chains are formed through inter­molecular N—H⋯S hydrogen bonds.

Related literature

For applications of N-(β-diorganodithio­phospho­ryleth­yl) aryl and alkyl sulfonamides in the field of agrochemicals, see: Llewellyn & Chester (1963). Bensulide is a selective organophosphate herbicide which is mainly used on vegetable crops such as carrots, cucumbers, peppers and melons, see: Meister (1992). For the synthesis, see: Llewellyn & Jeffrey (1978).graphic file with name e-68-0o282-scheme1.jpg

Experimental

Crystal data

  • C14H24NO4PS3

  • M r = 397.49

  • Monoclinic, Inline graphic

  • a = 8.6431 (17) Å

  • b = 24.465 (5) Å

  • c = 9.875 (2) Å

  • β = 104.99 (3)°

  • V = 2017.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.37 × 0.35 × 0.27 mm

Data collection

  • Rigaku R-AXIS RAPID CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.843, T max = 0.883

  • 19632 measured reflections

  • 4605 independent reflections

  • 3083 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.127

  • S = 1.11

  • 4605 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681105536X/zs2173sup1.cif

e-68-0o282-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681105536X/zs2173Isup2.hkl

e-68-0o282-Isup2.hkl (225.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681105536X/zs2173Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯S1i 0.86 2.86 3.496 (2) 132
C7—H7B⋯S1 0.97 2.83 3.447 (3) 122

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Professor Yueqing Zheng (Ningbo University, Ningbo, China) for helpful discussions and Wenxiang Huang for the X-ray data collection.

supplementary crystallographic information

Comment

N-(β-Diorganodithiophosphorylethyl) aryl and alkyl sulfonamides are known for their applications in the field of agrochemicals because of their significant biological properties (Llewellyn et al., 1963). The title compound C14H24NO4PS3 (I), with the common name bensulide, is a selective organophosphate herbicide which is mainly used on vegetable crops such as carrots, cucumbers, peppers and melons (Meister, 1992). This typical organic phosphorus compound is one of our plant products that can be synthesized by combining the sodium salt of 2-(phenylsulfonamido)ethyl sulfate (II) and O,O'-diisopropyl phosphorodithioate (III) (Llewellyn et al., 1978) (Fig. 3).

In the title compound (Fig. 1), bond distances and angles are as expected. The P atom is coordinated by two S atoms and two O atoms. The O1—P—S1, S1—P—S2 and O2—P—S1 bond angles [117.91 (7), 114.48 (5), 111.46 (7)°, respectively] are larger than those for angles O2—P—S2, O1—P—O2 and O1—P—S2 [108.85 (8), 102.35 (9), 100.58 (7)°, respectively], indicating a distorted tetrahedral configuration. The molecular conformation is stabilized by weak intramolecular C—H···S and C—H···O interactions and one-dimensional chains are formed through intermolecular N—H···S hydrogen bonds (Table 1, Fig. 2).

Experimental

A 30% aqueous solution of sodium 2-(phenylsulfonamido)ethyl sulfate [(II), 0.5mol] was added to a 30% aqueous solution of sodium O,O'-diisopropyl phosphorodithioate [(III), 0.5 mol]. Addition of 50% aqueous sodium hydroxide brought the pH to 10.5. The mixture was then heated to 85 °C for 4 h with vigorous stirring after which the reaction flask was cooled to 25 °C. The pH was lowered from 12 to approximately 8 by the addition of concentrated sulfuric acid. The product was extracted with toluene (400 ml), washed with 2% sodium bicarbonate solution followed by a saturated sodium chloride solution, then dried and evaporated. Recrystallization from toluene gave colourless blocks of (I).

Refinement

Hydrogen atoms were placed in geometrically calculated positions with C—H = 0.93–0.97 Å and were treated using a riding model approximation with Uiso(H) = 1.2Ueq(aromatic C or N) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the title compound with displacement ellipsoids drawn at the 35% probability level.

Fig. 2.

Fig. 2.

Part of the crystal packing of (I). Weak intermolecular interactions are shown as dashed lines.

Fig. 3.

Fig. 3.

Reaction scheme for the synthesis of (I).

Crystal data

C14H24NO4PS3 F(000) = 840
Mr = 397.49 Dx = 1.309 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 19632 reflections
a = 8.6431 (17) Å θ = 3.3–27.5°
b = 24.465 (5) Å µ = 0.46 mm1
c = 9.875 (2) Å T = 293 K
β = 104.99 (3)° Block, colorless
V = 2017.1 (8) Å3 0.37 × 0.35 × 0.27 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID CCD diffractometer 4605 independent reflections
Radiation source: fine-focus sealed tube 3083 reflections with I > 2σ(I)
graphite Rint = 0.029
ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −11→10
Tmin = 0.843, Tmax = 0.883 k = −31→31
19632 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.6749P] where P = (Fo2 + 2Fc2)/3
4605 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P 0.25939 (7) 0.64011 (3) 0.36909 (6) 0.04780 (17)
S1 0.36714 (8) 0.63940 (4) 0.22205 (8) 0.0740 (2)
S2 0.40173 (9) 0.66439 (3) 0.56352 (7) 0.0654 (2)
S3 0.47902 (8) 0.85949 (3) 0.34382 (7) 0.05828 (19)
N 0.5557 (2) 0.81061 (8) 0.4499 (2) 0.0591 (5)
H0A 0.6574 0.8085 0.4858 0.071*
O1 0.19173 (18) 0.58432 (6) 0.40940 (18) 0.0543 (4)
O2 0.10605 (17) 0.67690 (7) 0.33022 (17) 0.0520 (4)
O3 0.6077 (2) 0.89486 (8) 0.3366 (2) 0.0812 (6)
O4 0.3819 (3) 0.83522 (9) 0.2196 (2) 0.0808 (6)
C1 0.2942 (3) 0.53593 (10) 0.4530 (3) 0.0570 (6)
H1A 0.4064 0.5460 0.4633 0.068*
C2 0.2453 (5) 0.49360 (13) 0.3407 (4) 0.0934 (11)
H2A 0.2640 0.5072 0.2551 0.140*
H2B 0.1336 0.4855 0.3263 0.140*
H2C 0.3070 0.4610 0.3686 0.140*
C3 0.2729 (5) 0.51819 (14) 0.5913 (4) 0.0915 (10)
H3A 0.3072 0.5469 0.6587 0.137*
H3B 0.3358 0.4860 0.6219 0.137*
H3C 0.1620 0.5102 0.5825 0.137*
C4 −0.0043 (3) 0.68091 (10) 0.4232 (3) 0.0551 (6)
H4A 0.0481 0.6651 0.5148 0.066*
C5 −0.1513 (3) 0.64868 (14) 0.3583 (4) 0.0869 (10)
H5A −0.1231 0.6110 0.3520 0.130*
H5B −0.1995 0.6625 0.2661 0.130*
H5C −0.2258 0.6518 0.4150 0.130*
C6 −0.0328 (4) 0.74050 (12) 0.4411 (4) 0.0874 (10)
H6A 0.0667 0.7580 0.4862 0.131*
H6B −0.1070 0.7449 0.4978 0.131*
H6C −0.0763 0.7569 0.3510 0.131*
C7 0.5288 (3) 0.71656 (11) 0.5167 (3) 0.0647 (7)
H7A 0.6232 0.7214 0.5941 0.078*
H7B 0.5640 0.7041 0.4363 0.078*
C8 0.4462 (3) 0.76989 (10) 0.4830 (3) 0.0601 (6)
H8A 0.3538 0.7657 0.4035 0.072*
H8B 0.4088 0.7823 0.5623 0.072*
C9 0.3490 (3) 0.89472 (9) 0.4243 (2) 0.0505 (5)
C10 0.4098 (4) 0.93520 (10) 0.5218 (3) 0.0628 (7)
H10A 0.5180 0.9441 0.5437 0.075*
C11 0.3071 (4) 0.96202 (12) 0.5857 (3) 0.0766 (8)
H11A 0.3463 0.9896 0.6502 0.092*
C12 0.1486 (4) 0.94845 (13) 0.5552 (3) 0.0768 (8)
H12A 0.0810 0.9666 0.5996 0.092*
C13 0.0884 (4) 0.90801 (14) 0.4589 (3) 0.0757 (8)
H13A −0.0196 0.8988 0.4388 0.091*
C14 0.1885 (3) 0.88125 (11) 0.3926 (3) 0.0623 (7)
H14A 0.1481 0.8542 0.3267 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P 0.0387 (3) 0.0591 (4) 0.0454 (3) 0.0051 (3) 0.0104 (2) 0.0005 (3)
S1 0.0534 (4) 0.1117 (6) 0.0642 (5) 0.0140 (4) 0.0283 (3) 0.0037 (4)
S2 0.0685 (4) 0.0623 (4) 0.0540 (4) −0.0086 (3) −0.0046 (3) 0.0056 (3)
S3 0.0680 (4) 0.0611 (4) 0.0495 (4) −0.0070 (3) 0.0221 (3) −0.0053 (3)
N 0.0486 (11) 0.0557 (12) 0.0750 (15) −0.0015 (10) 0.0195 (10) −0.0034 (10)
O1 0.0462 (8) 0.0532 (9) 0.0630 (11) 0.0029 (7) 0.0130 (8) −0.0035 (8)
O2 0.0439 (8) 0.0652 (10) 0.0501 (10) 0.0141 (7) 0.0181 (7) 0.0079 (7)
O3 0.0895 (14) 0.0746 (12) 0.0930 (16) −0.0182 (11) 0.0482 (12) 0.0031 (11)
O4 0.0968 (15) 0.0956 (15) 0.0493 (11) −0.0054 (12) 0.0176 (10) −0.0195 (10)
C1 0.0523 (13) 0.0521 (13) 0.0626 (16) 0.0069 (11) 0.0076 (11) −0.0040 (11)
C2 0.101 (2) 0.0698 (19) 0.095 (3) 0.0190 (18) −0.001 (2) −0.0266 (17)
C3 0.121 (3) 0.078 (2) 0.080 (2) 0.010 (2) 0.035 (2) 0.0165 (17)
C4 0.0505 (13) 0.0622 (14) 0.0597 (15) 0.0066 (12) 0.0268 (11) −0.0014 (12)
C5 0.0572 (16) 0.097 (2) 0.116 (3) −0.0085 (16) 0.0391 (18) −0.025 (2)
C6 0.089 (2) 0.0681 (18) 0.123 (3) 0.0079 (17) 0.061 (2) −0.0056 (18)
C7 0.0460 (13) 0.0616 (15) 0.0792 (19) 0.0012 (12) 0.0031 (12) 0.0021 (13)
C8 0.0564 (14) 0.0547 (14) 0.0730 (18) −0.0022 (12) 0.0237 (13) −0.0054 (12)
C9 0.0616 (14) 0.0488 (12) 0.0403 (12) −0.0011 (11) 0.0118 (10) 0.0044 (9)
C10 0.0729 (17) 0.0571 (14) 0.0581 (16) −0.0088 (13) 0.0165 (13) −0.0068 (12)
C11 0.103 (2) 0.0637 (17) 0.0653 (19) 0.0023 (17) 0.0264 (17) −0.0104 (14)
C12 0.090 (2) 0.0785 (19) 0.0666 (19) 0.0278 (18) 0.0287 (17) 0.0078 (15)
C13 0.0605 (16) 0.096 (2) 0.069 (2) 0.0095 (16) 0.0140 (14) 0.0131 (17)
C14 0.0616 (15) 0.0693 (16) 0.0513 (15) −0.0022 (13) 0.0059 (12) −0.0012 (12)

Geometric parameters (Å, °)

P—O2 1.5654 (16) C4—H4A 0.9800
P—O1 1.5761 (18) C5—H5A 0.9600
P—S1 1.9171 (10) C5—H5B 0.9600
P—S2 2.0811 (11) C5—H5C 0.9600
S2—C7 1.820 (3) C6—H6A 0.9600
S3—O4 1.425 (2) C6—H6B 0.9600
S3—O3 1.4254 (19) C6—H6C 0.9600
S3—N 1.615 (2) C7—C8 1.484 (4)
S3—C9 1.761 (3) C7—H7A 0.9700
N—C8 1.468 (3) C7—H7B 0.9700
N—H0A 0.8600 C8—H8A 0.9700
O1—C1 1.474 (3) C8—H8B 0.9700
O2—C4 1.489 (3) C9—C14 1.381 (3)
C1—C3 1.489 (4) C9—C10 1.386 (3)
C1—C2 1.496 (4) C10—C11 1.381 (4)
C1—H1A 0.9800 C10—H10A 0.9300
C2—H2A 0.9600 C11—C12 1.365 (4)
C2—H2B 0.9600 C11—H11A 0.9300
C2—H2C 0.9600 C12—C13 1.377 (4)
C3—H3A 0.9600 C12—H12A 0.9300
C3—H3B 0.9600 C13—C14 1.378 (4)
C3—H3C 0.9600 C13—H13A 0.9300
C4—C5 1.492 (4) C14—H14A 0.9300
C4—C6 1.497 (4)
O2—P—O1 102.35 (9) C4—C5—H5A 109.5
O2—P—S1 111.46 (7) C4—C5—H5B 109.5
O1—P—S1 117.91 (7) H5A—C5—H5B 109.5
O2—P—S2 108.85 (8) C4—C5—H5C 109.5
O1—P—S2 100.58 (7) H5A—C5—H5C 109.5
S1—P—S2 114.48 (5) H5B—C5—H5C 109.5
C7—S2—P 102.56 (10) C4—C6—H6A 109.5
O4—S3—O3 120.22 (14) C4—C6—H6B 109.5
O4—S3—N 107.55 (13) H6A—C6—H6B 109.5
O3—S3—N 106.68 (13) C4—C6—H6C 109.5
O4—S3—C9 106.87 (12) H6A—C6—H6C 109.5
O3—S3—C9 108.84 (12) H6B—C6—H6C 109.5
N—S3—C9 105.83 (11) C8—C7—S2 112.74 (18)
C8—N—S3 117.80 (17) C8—C7—H7A 109.0
C8—N—H0A 121.1 S2—C7—H7A 109.0
S3—N—H0A 121.1 C8—C7—H7B 109.0
C1—O1—P 122.36 (15) S2—C7—H7B 109.0
C4—O2—P 121.58 (15) H7A—C7—H7B 107.8
O1—C1—C3 107.1 (2) N—C8—C7 110.2 (2)
O1—C1—C2 107.8 (2) N—C8—H8A 109.6
C3—C1—C2 113.6 (3) C7—C8—H8A 109.6
O1—C1—H1A 109.4 N—C8—H8B 109.6
C3—C1—H1A 109.4 C7—C8—H8B 109.6
C2—C1—H1A 109.4 H8A—C8—H8B 108.1
C1—C2—H2A 109.5 C14—C9—C10 120.4 (2)
C1—C2—H2B 109.5 C14—C9—S3 120.14 (19)
H2A—C2—H2B 109.5 C10—C9—S3 119.4 (2)
C1—C2—H2C 109.5 C11—C10—C9 118.9 (3)
H2A—C2—H2C 109.5 C11—C10—H10A 120.5
H2B—C2—H2C 109.5 C9—C10—H10A 120.5
C1—C3—H3A 109.5 C12—C11—C10 120.7 (3)
C1—C3—H3B 109.5 C12—C11—H11A 119.7
H3A—C3—H3B 109.5 C10—C11—H11A 119.7
C1—C3—H3C 109.5 C11—C12—C13 120.4 (3)
H3A—C3—H3C 109.5 C11—C12—H12A 119.8
H3B—C3—H3C 109.5 C13—C12—H12A 119.8
O2—C4—C5 108.1 (2) C12—C13—C14 119.8 (3)
O2—C4—C6 106.8 (2) C12—C13—H13A 120.1
C5—C4—C6 114.7 (2) C14—C13—H13A 120.1
O2—C4—H4A 109.0 C13—C14—C9 119.7 (3)
C5—C4—H4A 109.0 C13—C14—H14A 120.1
C6—C4—H4A 109.0 C9—C14—H14A 120.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H0A···S1i 0.86 2.86 3.496 (2) 132
C7—H7B···S1 0.97 2.83 3.447 (3) 122
C8—H8A···O4 0.97 2.55 2.980 (3) 107
C14—H14A···O4 0.93 2.55 2.908 (4) 103

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2173).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  3. Llewellyn, W. & Chester, L. (1963). US Patent No. 3 205 253.
  4. Llewellyn, W. & Jeffrey, D. (1978). US Patent No. 4 117 043.
  5. Meister, R. T. (1992). Farm Chemicals Handbook Willoghby, OH: Meister Publishing Company.
  6. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681105536X/zs2173sup1.cif

e-68-0o282-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681105536X/zs2173Isup2.hkl

e-68-0o282-Isup2.hkl (225.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681105536X/zs2173Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES