Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 7;68(Pt 2):o289. doi: 10.1107/S1600536811055759

Morpholin-4-ium hydrogen tartrate

Ming-Liang Liu a,*
PMCID: PMC3274983  PMID: 22346928

Abstract

In the title mol­ecular salt, C4H10NO+·C4H5O6 , the morpholinium cation adopts a chair conformation. The conformation of the C—C—C—C backbone of the monotartrate anion is close to anti [torsion angle = 173.18 (17)°], which is supported by two intra­molecular O—H⋯O hydrogen bonds. In the crystal, the components are linked by N—H—O and O—H—O hydrogen bonds, generating (001) sheets.

Related literature

For a related structure, see: Ruble et al. (1976).graphic file with name e-68-0o289-scheme1.jpg

Experimental

Crystal data

  • C4H10NO+·C4H5O6

  • M r = 237.21

  • Orthorhombic, Inline graphic

  • a = 7.2601 (15) Å

  • b = 9.1716 (18) Å

  • c = 16.283 (3) Å

  • V = 1084.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.28 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.954, T max = 0.966

  • 8960 measured reflections

  • 1903 independent reflections

  • 1747 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.097

  • S = 1.17

  • 1903 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811055759/hb6576sup1.cif

e-68-0o289-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055759/hb6576Isup2.hkl

e-68-0o289-Isup2.hkl (93.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.90 2.05 2.918 (3) 162
N1—H1B⋯O2ii 0.90 1.95 2.790 (3) 154
O1—H1⋯O2 0.82 2.09 2.600 (2) 120
O1—H1⋯O4iii 0.82 2.40 3.068 (2) 139
O5—H5⋯O3iv 0.82 1.73 2.529 (2) 165
O6—H6⋯O4 0.82 2.20 2.674 (2) 117
O6—H6⋯O1v 0.82 2.24 2.996 (2) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

supplementary crystallographic information

Experimental

0.87 g (0.01 mol) of morpholine was firstly dissolved in 30 ml of ethanol, to which 1.50 g (0.01 mol) of tartaric acid was added at ambient temperature. Colourless blocks were obtained by the slow evaporation of the above solution after 3 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

Refinement

The absolute structure is indeterminate based on the present model. H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.97Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq(Csp3,N)] and allowed to ride.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal structure of the title compound with view along the b axis. Intermolecular interactions are shown as dashed lines.

Crystal data

C4H10NO+·C4H5O6 F(000) = 504
Mr = 237.21 Dx = 1.453 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1903 reflections
a = 7.2601 (15) Å θ = 3.4–26.4°
b = 9.1716 (18) Å µ = 0.13 mm1
c = 16.283 (3) Å T = 293 K
V = 1084.2 (4) Å3 Block, colourless
Z = 4 0.36 × 0.32 × 0.28 mm

Data collection

Rigaku Mercury2 diffractometer 1747 reflections with I > \2s(I)
Radiation source: fine-focus sealed tube Rint = 0.060
graphite θmax = 25°, θmin = 3.1°
ω scans h = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −10→10
Tmin = 0.954, Tmax = 0.966 l = −19→19
8960 measured reflections 3 standard reflections every 180 reflections
1903 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.0989P] where P = (Fo2 + 2Fc2)/3
1903 reflections (Δ/σ)max = 0.095
146 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O7 0.3787 (3) 0.3058 (2) 0.55071 (10) 0.0542 (5)
N1 0.4758 (3) 0.4978 (2) 0.68097 (11) 0.0426 (5)
H1A 0.4382 0.4480 0.7256 0.051*
H1B 0.5249 0.5827 0.6979 0.051*
C1 0.3161 (4) 0.5269 (3) 0.62661 (15) 0.0510 (7)
H1C 0.3541 0.5882 0.5811 0.061*
H1D 0.2210 0.5780 0.6570 0.061*
C2 0.2413 (4) 0.3847 (3) 0.59447 (15) 0.0508 (7)
H2A 0.1973 0.3262 0.6400 0.061*
H2B 0.1378 0.4039 0.5584 0.061*
C3 0.5307 (4) 0.2735 (3) 0.60333 (15) 0.0519 (7)
H3A 0.6219 0.2178 0.5731 0.062*
H3B 0.4885 0.2143 0.6490 0.062*
C4 0.6178 (4) 0.4113 (3) 0.63583 (16) 0.0504 (7)
H4A 0.7186 0.3871 0.6725 0.060*
H4B 0.6668 0.4684 0.5907 0.060*
O1 0.4383 (2) 0.75847 (19) 0.31549 (10) 0.0494 (5)
H1 0.3531 0.7781 0.2843 0.074*
O2 0.08530 (19) 0.71085 (17) 0.31349 (8) 0.0358 (4)
O3 0.08075 (18) 0.60421 (18) 0.43779 (9) 0.0394 (4)
O4 0.73405 (19) 0.46475 (19) 0.31136 (9) 0.0418 (4)
O5 0.73379 (19) 0.58152 (19) 0.43315 (9) 0.0410 (4)
H5 0.8459 0.5815 0.4269 0.062*
O6 0.3670 (2) 0.44104 (19) 0.31002 (10) 0.0474 (5)
H6 0.4483 0.4105 0.2796 0.071*
C5 0.6557 (3) 0.5186 (2) 0.36993 (13) 0.0312 (5)
C6 0.4477 (3) 0.5161 (3) 0.37717 (12) 0.0304 (5)
H6A 0.4145 0.4652 0.4280 0.036*
C7 0.3714 (3) 0.6722 (2) 0.38132 (13) 0.0304 (5)
H7 0.4082 0.7168 0.4335 0.036*
C8 0.1603 (3) 0.6624 (2) 0.37789 (13) 0.0284 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O7 0.0728 (12) 0.0500 (12) 0.0397 (9) 0.0035 (11) −0.0084 (9) −0.0083 (9)
N1 0.0568 (12) 0.0357 (12) 0.0351 (10) −0.0088 (10) 0.0062 (9) −0.0021 (9)
C1 0.0662 (17) 0.0440 (17) 0.0427 (13) 0.0129 (14) 0.0084 (12) 0.0050 (12)
C2 0.0513 (15) 0.0540 (18) 0.0472 (14) 0.0009 (14) −0.0056 (12) 0.0016 (12)
C3 0.0590 (16) 0.0467 (18) 0.0499 (15) 0.0103 (14) −0.0012 (13) −0.0094 (13)
C4 0.0462 (15) 0.0577 (18) 0.0472 (14) −0.0024 (14) 0.0061 (12) −0.0044 (13)
O1 0.0317 (8) 0.0551 (12) 0.0614 (11) −0.0088 (8) 0.0021 (8) 0.0244 (9)
O2 0.0332 (8) 0.0366 (9) 0.0377 (8) 0.0004 (7) −0.0087 (7) 0.0026 (7)
O3 0.0229 (8) 0.0569 (11) 0.0384 (8) −0.0009 (7) 0.0019 (7) 0.0068 (8)
O4 0.0298 (8) 0.0526 (11) 0.0429 (9) 0.0040 (8) 0.0065 (7) −0.0073 (8)
O5 0.0211 (7) 0.0579 (11) 0.0441 (9) 0.0001 (7) 0.0015 (7) −0.0070 (8)
O6 0.0299 (8) 0.0554 (11) 0.0568 (10) 0.0005 (8) 0.0002 (8) −0.0227 (9)
C5 0.0257 (10) 0.0330 (13) 0.0349 (11) 0.0021 (10) 0.0013 (9) 0.0033 (10)
C6 0.0255 (10) 0.0337 (13) 0.0318 (11) −0.0008 (10) 0.0023 (8) −0.0002 (10)
C7 0.0244 (10) 0.0323 (13) 0.0344 (11) −0.0025 (10) −0.0003 (8) 0.0031 (10)
C8 0.0255 (10) 0.0245 (12) 0.0351 (11) 0.0000 (10) −0.0015 (9) −0.0034 (10)

Geometric parameters (Å, °)

O7—C2 1.423 (3) C4—H4B 0.9700
O7—C3 1.428 (3) O1—C7 1.418 (2)
N1—C1 1.483 (3) O1—H1 0.8203
N1—C4 1.494 (3) O2—C8 1.263 (2)
N1—H1A 0.9006 O3—C8 1.253 (2)
N1—H1B 0.8996 O4—C5 1.216 (2)
C1—C2 1.507 (4) O5—C5 1.309 (2)
C1—H1C 0.9700 O5—H5 0.8200
C1—H1D 0.9700 O6—C6 1.419 (2)
C2—H2A 0.9700 O6—H6 0.8198
C2—H2B 0.9700 C5—C6 1.515 (3)
C3—C4 1.510 (4) C6—C7 1.536 (3)
C3—H3A 0.9700 C6—H6A 0.9800
C3—H3B 0.9700 C7—C8 1.536 (3)
C4—H4A 0.9700 C7—H7 0.9800
C2—O7—C3 110.29 (17) N1—C4—H4A 109.9
C1—N1—C4 109.97 (18) C3—C4—H4A 109.9
C1—N1—H1A 109.6 N1—C4—H4B 109.9
C4—N1—H1A 109.7 C3—C4—H4B 109.9
C1—N1—H1B 109.7 H4A—C4—H4B 108.3
C4—N1—H1B 109.7 C7—O1—H1 109.4
H1A—N1—H1B 108.2 C5—O5—H5 109.4
N1—C1—C2 109.5 (2) C6—O6—H6 109.5
N1—C1—H1C 109.8 O4—C5—O5 126.37 (18)
C2—C1—H1C 109.8 O4—C5—C6 121.5 (2)
N1—C1—H1D 109.8 O5—C5—C6 112.16 (18)
C2—C1—H1D 109.8 O6—C6—C5 111.03 (17)
H1C—C1—H1D 108.2 O6—C6—C7 109.70 (17)
O7—C2—C1 111.2 (2) C5—C6—C7 110.44 (18)
O7—C2—H2A 109.4 O6—C6—H6A 108.5
C1—C2—H2A 109.4 C5—C6—H6A 108.5
O7—C2—H2B 109.4 C7—C6—H6A 108.5
C1—C2—H2B 109.4 O1—C7—C6 111.28 (16)
H2A—C2—H2B 108.0 O1—C7—C8 110.32 (17)
O7—C3—C4 111.1 (2) C6—C7—C8 107.67 (18)
O7—C3—H3A 109.4 O1—C7—H7 109.2
C4—C3—H3A 109.4 C6—C7—H7 109.2
O7—C3—H3B 109.4 C8—C7—H7 109.2
C4—C3—H3B 109.4 O3—C8—O2 126.69 (18)
H3A—C3—H3B 108.0 O3—C8—C7 117.18 (18)
N1—C4—C3 109.1 (2) O2—C8—C7 116.10 (19)
C4—N1—C1—C2 56.0 (3) O5—C5—C6—C7 61.0 (2)
C3—O7—C2—C1 60.4 (3) O6—C6—C7—O1 −70.5 (2)
N1—C1—C2—O7 −58.4 (3) C5—C6—C7—O1 52.2 (2)
C2—O7—C3—C4 −60.4 (3) O6—C6—C7—C8 50.5 (2)
C1—N1—C4—C3 −55.9 (3) C5—C6—C7—C8 173.18 (17)
O7—C3—C4—N1 58.0 (3) O1—C7—C8—O3 −171.64 (18)
O4—C5—C6—O6 1.9 (3) C6—C7—C8—O3 66.7 (2)
O5—C5—C6—O6 −177.08 (17) O1—C7—C8—O2 10.1 (3)
O4—C5—C6—C7 −120.0 (2) C6—C7—C8—O2 −111.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.90 2.05 2.918 (3) 162
N1—H1B···O2ii 0.90 1.95 2.790 (3) 154
O1—H1···O2 0.82 2.09 2.600 (2) 120
O1—H1···O4iii 0.82 2.40 3.068 (2) 139
O5—H5···O3iv 0.82 1.73 2.529 (2) 165
O6—H6···O4 0.82 2.20 2.674 (2) 117
O6—H6···O1v 0.82 2.24 2.996 (2) 153

Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) x+1/2, −y+3/2, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) x+1, y, z; (v) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6576).

References

  1. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  2. Ruble, J. R., Hite, G. & Soares, J. R. (1976). Acta Cryst. B32, 136–140.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811055759/hb6576sup1.cif

e-68-0o289-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055759/hb6576Isup2.hkl

e-68-0o289-Isup2.hkl (93.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES