Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 7;68(Pt 2):o297. doi: 10.1107/S1600536811055930

2-Hy­droxy-N′-(4-hy­droxy­benzyl­idene)-3-methyl­benzohydrazide

Xi-Hai Shen a, Li-Xue Zhu a,*, Li-Juen Shao a, Zhao-Fu Zhu a
PMCID: PMC3274990  PMID: 22346935

Abstract

The title compound, C15H14N2O3, was prepared by condensing 4-hy­droxy­benzaldehyde and 2-hy­droxy-3-methyl­benzo­hydra­zide in methanol. The two benzene rings make a dihedral angle of 19.03 (11)°. An intra­molecular O—H⋯O hydrogen bond is observed. The crystal structure is stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds and C—H⋯O inter­actions, which lead to the formation of a three-dimensional network.

Related literature

For the crystal structures of similar hydrazone compounds, see: Fun et al. (2011); Horkaew et al. (2011); Zhi et al. (2011); Huang & Wu (2010).graphic file with name e-68-0o297-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O3

  • M r = 270.28

  • Orthorhombic, Inline graphic

  • a = 7.3872 (17) Å

  • b = 13.012 (2) Å

  • c = 13.592 (2) Å

  • V = 1306.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.981, T max = 0.984

  • 6296 measured reflections

  • 2663 independent reflections

  • 1953 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.103

  • S = 0.99

  • 2663 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811055930/su2356sup1.cif

e-68-0o297-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055930/su2356Isup2.hkl

e-68-0o297-Isup2.hkl (130.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811055930/su2356Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.86 2.575 (2) 146
O1—H1⋯O2i 0.82 2.00 2.809 (2) 167
N2—H2A⋯O1ii 0.86 2.36 3.067 (2) 139
C3—H3A⋯O2i 0.93 2.51 3.208 (2) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

In the last few years, the crystal structures of a number of hydrazone compounds have been reported (Fun et al., 2011; Horkaew et al., 2011; Zhi et al., 2011; Huang & Wu, 2010). As an extension of work on such compounds, we report herein on the synthesis and crystal structure of the title compound.

In the title molecule, Fig. 1, there is an intramolecular O3—H3···O2 hydrogen bond (Table 1). The benzene rings, (C1—C6) and (C9—C14), make a dihedral angle of 19.03 (11)°. All the geometrical parameters are within normal ranges and are comparable with those in similar compounds, mentioned above.

In the crystal, molecules are linked via O—H···O and N—H···O hydrogen bonds and C-H···O interactions, leading to the formation of a three-dimensional network (Table 1 and Fig. 2).

Experimental

4-Hydroxybenzaldehyde (122.1 mg, 1.0 mmol) and 2-hydroxy-3-methylbenzohydrazide (166.2 mg, 1.0 mmol) were mixed in methanol (60 ml). The mixture was refluxed for 30 min, then cooled to room temperature, yielding a colourless solution. Colourless crystals were formed when the solution was left to evaporate in air for several days.

Refinement

All the H atoms were placed in calculated positions and refined as riding atoms: O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(O,N,C), where k = 1.5 for OH and CH3 H-atoms and k = 1.2 for all other H-atoms. In the absence of significant anomalous scattering effects the Flack parameter of 2.5 (15) for 1092 Friedel pairs, has no meaning.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom numbering and displacement ellipsoids drawn at the 30% probability level. The intramolecular O—H···O hydrogen bond is drawn as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. The O-H···O and N-H···O hydrogen bonds are drawn as dashed lines.

Crystal data

C15H14N2O3 F(000) = 568
Mr = 270.28 Dx = 1.374 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1375 reflections
a = 7.3872 (17) Å θ = 2.6–24.5°
b = 13.012 (2) Å µ = 0.10 mm1
c = 13.592 (2) Å T = 298 K
V = 1306.5 (4) Å3 Block, colourless
Z = 4 0.20 × 0.20 × 0.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2663 independent reflections
Radiation source: fine-focus sealed tube 1953 reflections with I > 2σ(I)
graphite Rint = 0.032
ω scans θmax = 26.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→8
Tmin = 0.981, Tmax = 0.984 k = −13→16
6296 measured reflections l = −17→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0494P)2] where P = (Fo2 + 2Fc2)/3
2663 reflections (Δ/σ)max = 0.001
184 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.0995 (3) 0.79013 (12) 0.51891 (12) 0.0453 (5)
N2 0.1159 (3) 0.72214 (12) 0.44083 (12) 0.0455 (5)
H2A 0.1404 0.7437 0.3825 0.055*
O1 0.1126 (2) 1.18743 (10) 0.79368 (10) 0.0516 (4)
H1 0.0544 1.1672 0.8412 0.077*
O2 0.0499 (2) 0.59172 (10) 0.54350 (10) 0.0523 (5)
O3 0.1334 (3) 0.40715 (11) 0.49251 (11) 0.0600 (5)
H3 0.1016 0.4528 0.5303 0.090*
C1 0.1268 (3) 0.96163 (14) 0.57681 (14) 0.0376 (5)
C2 0.0866 (3) 0.93585 (16) 0.67358 (15) 0.0430 (6)
H2 0.0608 0.8679 0.6894 0.052*
C3 0.0846 (3) 1.00949 (16) 0.74632 (14) 0.0433 (6)
H3A 0.0602 0.9908 0.8110 0.052*
C4 0.1188 (3) 1.11133 (14) 0.72333 (15) 0.0395 (5)
C5 0.1604 (3) 1.13823 (17) 0.62779 (15) 0.0479 (6)
H5 0.1856 1.2063 0.6121 0.057*
C6 0.1646 (3) 1.06390 (16) 0.55602 (16) 0.0457 (6)
H6 0.1935 1.0826 0.4919 0.055*
C7 0.1324 (3) 0.88408 (15) 0.49972 (15) 0.0424 (5)
H7 0.1604 0.9034 0.4356 0.051*
C8 0.0922 (3) 0.62132 (15) 0.45912 (15) 0.0410 (5)
C9 0.1136 (3) 0.54807 (15) 0.37750 (14) 0.0393 (5)
C10 0.1344 (3) 0.44378 (16) 0.39901 (15) 0.0437 (5)
C11 0.1573 (3) 0.37050 (17) 0.32441 (17) 0.0487 (6)
C12 0.1510 (3) 0.40437 (19) 0.22839 (17) 0.0541 (6)
H12 0.1634 0.3569 0.1777 0.065*
C13 0.1266 (3) 0.50748 (19) 0.20530 (17) 0.0537 (6)
H13 0.1215 0.5281 0.1399 0.064*
C14 0.1101 (3) 0.57847 (17) 0.27877 (15) 0.0465 (5)
H14 0.0964 0.6476 0.2630 0.056*
C15 0.1874 (4) 0.26079 (17) 0.35184 (19) 0.0692 (8)
H15A 0.2038 0.2206 0.2933 0.104*
H15B 0.0842 0.2357 0.3875 0.104*
H15C 0.2934 0.2555 0.3924 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0612 (13) 0.0413 (10) 0.0334 (10) 0.0007 (9) 0.0050 (9) −0.0060 (7)
N2 0.0655 (13) 0.0413 (10) 0.0297 (9) 0.0004 (9) 0.0056 (10) −0.0025 (8)
O1 0.0721 (12) 0.0415 (8) 0.0411 (8) −0.0051 (8) 0.0055 (8) −0.0065 (7)
O2 0.0801 (12) 0.0455 (9) 0.0312 (8) −0.0016 (8) 0.0081 (8) 0.0011 (7)
O3 0.0948 (13) 0.0435 (9) 0.0416 (9) 0.0010 (10) 0.0016 (10) 0.0033 (7)
C1 0.0427 (12) 0.0367 (11) 0.0335 (11) 0.0039 (10) −0.0002 (10) 0.0008 (9)
C2 0.0518 (14) 0.0346 (11) 0.0427 (12) −0.0004 (10) 0.0029 (11) 0.0039 (10)
C3 0.0576 (16) 0.0410 (12) 0.0313 (11) 0.0001 (10) 0.0038 (11) 0.0010 (9)
C4 0.0436 (13) 0.0366 (11) 0.0383 (12) 0.0026 (10) 0.0018 (11) −0.0053 (9)
C5 0.0598 (15) 0.0362 (11) 0.0475 (14) −0.0068 (10) 0.0091 (12) 0.0031 (10)
C6 0.0579 (15) 0.0453 (13) 0.0339 (11) 0.0019 (11) 0.0046 (12) 0.0053 (10)
C7 0.0469 (13) 0.0434 (13) 0.0368 (12) 0.0037 (11) 0.0051 (11) −0.0005 (10)
C8 0.0458 (13) 0.0425 (12) 0.0347 (12) −0.0010 (10) −0.0004 (11) 0.0019 (9)
C9 0.0429 (12) 0.0411 (11) 0.0340 (11) −0.0024 (10) −0.0009 (11) −0.0042 (9)
C10 0.0491 (14) 0.0453 (12) 0.0365 (12) −0.0060 (11) −0.0005 (11) −0.0023 (10)
C11 0.0458 (14) 0.0508 (14) 0.0495 (14) −0.0061 (11) 0.0031 (11) −0.0102 (11)
C12 0.0519 (15) 0.0624 (16) 0.0481 (14) −0.0065 (12) 0.0039 (12) −0.0237 (12)
C13 0.0602 (16) 0.0687 (16) 0.0322 (12) −0.0023 (14) 0.0010 (12) −0.0033 (11)
C14 0.0520 (14) 0.0515 (13) 0.0360 (12) 0.0003 (11) −0.0003 (11) 0.0011 (10)
C15 0.083 (2) 0.0445 (14) 0.0800 (19) −0.0051 (13) 0.0022 (16) −0.0157 (13)

Geometric parameters (Å, °)

N1—C7 1.273 (2) C5—H5 0.9300
N1—N2 1.387 (2) C6—H6 0.9300
N2—C8 1.347 (2) C7—H7 0.9300
N2—H2A 0.8600 C8—C9 1.471 (3)
O1—C4 1.377 (2) C9—C10 1.397 (3)
O1—H1 0.8200 C9—C14 1.399 (3)
O2—C8 1.249 (2) C10—C11 1.402 (3)
O3—C10 1.357 (2) C11—C12 1.378 (3)
O3—H3 0.8200 C11—C15 1.492 (3)
C1—C6 1.389 (3) C12—C13 1.390 (3)
C1—C2 1.389 (3) C12—H12 0.9300
C1—C7 1.455 (3) C13—C14 1.366 (3)
C2—C3 1.377 (3) C13—H13 0.9300
C2—H2 0.9300 C14—H14 0.9300
C3—C4 1.385 (3) C15—H15A 0.9600
C3—H3A 0.9300 C15—H15B 0.9600
C4—C5 1.380 (3) C15—H15C 0.9600
C5—C6 1.374 (3)
C7—N1—N2 116.04 (18) O2—C8—N2 120.15 (18)
C8—N2—N1 117.96 (17) O2—C8—C9 121.28 (18)
C8—N2—H2A 121.0 N2—C8—C9 118.56 (18)
N1—N2—H2A 121.0 C10—C9—C14 118.51 (19)
C4—O1—H1 109.5 C10—C9—C8 118.92 (18)
C10—O3—H3 109.5 C14—C9—C8 122.55 (18)
C6—C1—C2 117.84 (18) O3—C10—C9 122.45 (19)
C6—C1—C7 120.81 (18) O3—C10—C11 116.04 (19)
C2—C1—C7 121.34 (18) C9—C10—C11 121.5 (2)
C3—C2—C1 120.93 (18) C12—C11—C10 117.6 (2)
C3—C2—H2 119.5 C12—C11—C15 123.2 (2)
C1—C2—H2 119.5 C10—C11—C15 119.2 (2)
C2—C3—C4 120.13 (19) C11—C12—C13 121.8 (2)
C2—C3—H3A 119.9 C11—C12—H12 119.1
C4—C3—H3A 119.9 C13—C12—H12 119.1
O1—C4—C5 118.58 (18) C14—C13—C12 120.0 (2)
O1—C4—C3 121.69 (18) C14—C13—H13 120.0
C5—C4—C3 119.73 (18) C12—C13—H13 120.0
C6—C5—C4 119.64 (19) C13—C14—C9 120.6 (2)
C6—C5—H5 120.2 C13—C14—H14 119.7
C4—C5—H5 120.2 C9—C14—H14 119.7
C5—C6—C1 121.70 (19) C11—C15—H15A 109.5
C5—C6—H6 119.1 C11—C15—H15B 109.5
C1—C6—H6 119.1 H15A—C15—H15B 109.5
N1—C7—C1 120.85 (19) C11—C15—H15C 109.5
N1—C7—H7 119.6 H15A—C15—H15C 109.5
C1—C7—H7 119.6 H15B—C15—H15C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2 0.82 1.86 2.575 (2) 146
O1—H1···O2i 0.82 2.00 2.809 (2) 167
N2—H2A···O1ii 0.86 2.36 3.067 (2) 139
C3—H3A···O2i 0.93 2.51 3.208 (2) 132

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x+1/2, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2356).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645. [DOI] [PMC free article] [PubMed]
  4. Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985. [DOI] [PMC free article] [PubMed]
  5. Huang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729–o2730. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811055930/su2356sup1.cif

e-68-0o297-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055930/su2356Isup2.hkl

e-68-0o297-Isup2.hkl (130.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811055930/su2356Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES