Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):o310–o311. doi: 10.1107/S1600536811055279

(3-Chloro­phen­yl){2-eth­oxy-5-[(Z)-hydroxy(phen­yl)methyl­idene]cyclo­penta-1,3-dien-1-yl}methanone

Mihaela-Liliana Tinţaş a, Richard A Varga b, Ion Grosu a, Elena Bogdan a,*
PMCID: PMC3275002  PMID: 22346947

Abstract

The title compound, C21H17ClO3, which crystallizes as one of two possible oxo/hy­droxy-fulvene prototropic tautomers, possesses a strong intra­molecular O—H⋯O hydrogen bond that closes a seven-membered ring. The dihedral angles between the central five-membered ring and two pendant rings are 55.05 (9) and 44.51 (10)°. The crystal packing is characterized by weak inter­molecular C—H⋯O inter­actions between an H atom of the oxymethyl­ene unit and the carbonyl group of an adjacent mol­ecule, resulting in formation of chains of mol­ecules along the a axis.

Related literature

For the structures of related 2-acyl-6-hydoxyfulvene derivatives, see: Ferguson et al. (1975); Dong et al. (2004, 2006). For more information on the synthesis of 2-acyl-6-hydoxyfulvene derivatives, see: Dong et al. (2004, 2006). For preparation details, see: Christl et al. (1998). For compounds obtained from 2-acyl-6-hydoxyfulvenes, see: Dong et al. (2004); Li et al. (2008); Snyder et al. (2005). For complexes based on 2-acyl-6-hydoxyfulvenes, see: Dong et al. (2004, 2006); Wang et al. (2005). For their various applications, see: Hong et al. (2005); Kondo et al. (1992); Vicente et al. (1995).graphic file with name e-68-0o310-scheme1.jpg

Experimental

Crystal data

  • C21H17ClO3

  • M r = 352.80

  • Monoclinic, Inline graphic

  • a = 8.1369 (16) Å

  • b = 27.737 (6) Å

  • c = 7.6709 (15) Å

  • β = 98.51 (3)°

  • V = 1712.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 297 K

  • 0.30 × 0.29 × 0.26 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.932, T max = 0.940

  • 15678 measured reflections

  • 3002 independent reflections

  • 2683 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.125

  • S = 1.17

  • 3002 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811055279/ld2041sup1.cif

e-68-0o310-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055279/ld2041Isup2.hkl

e-68-0o310-Isup2.hkl (147.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811055279/ld2041Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 1.07 (5) 1.38 (5) 2.435 (3) 168 (5)
C20—H20B⋯O2i 0.97 2.51 3.246 (3) 133

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the CNCS–UEFISCDI, project No. PN II_IDEI_2278/2008.

supplementary crystallographic information

Comment

Widely used as synthetic precursors, fulvenes are key intermediates in the total synthesis of several natural products (Hong et al. 2005, Vicente et al. 1995) and are well known as one of the important organic ligands used in construction of organometalic complexes (Li et al. 2008, Dong et al. 2006, Snyder et al. 2005, Wang et al. 2005, Dong et al. 2004). Fulvenes also raised interest due to their potential as non-linear optic materials (Kondo et al. 1992).

The title compound was obtained as a by-product in the oxidation reaction of dihydro-α-pyrone 1-(3-chlorophenyl)-4-phenyl-4a,5-dihydrocyclopenta[c]pyran-3(4H)-one with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) in chloroform (Christl et al. 1998). We observed that during the dehydrogenation process in order to obtain the corresponding α-pyrone, a competitive reaction underwent with formation of the fulvene derivative (Fig. 1) only when chloroform containing 0.5–1% ethanol as stabilizer is used as solvent. By performing the oxidation reaction in ethanol free of chloroform, no fulvene structure of the title compound could be identified.

In the molecule of the title compound (Fig. 1), the C—C bond lenghts of the five-membered ring as well as C13—C14 and C15—C19 range from 1.366 (3) to 1.481 (7) Å, corresponding to a delocalized system extended from C═O to the enol OH group (Ferguson et al. 1975). The hydroxy-fulvene tautomer is favored by the strong intramolecular H-bonding of the enol hydrogen atom H1 and the carbonyl oxygen atom O2, [H1···O2 = 1.38 (5) Å, O1—H1···O2 = 168 (5)°]. Thus a H-bonded seven-membered ring almost coplanar with the five-membered one is formed. The two aryl units attached at C13 and C19 are almost orthogonal disposed, the dihedral angles between the phenyl and m-chlorophenylene with respect to the seven-membered ring plane being 44.4 (9) and 54.4 (0)° respectively.

The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds, therefore chains of parallel molecules having the same orientation are formed [H20B···O2i = 2.51 (2) Å, C20—H20B···O2i = 133 (2)°; symmetry code: (i) -1 + x, y, z].

Experimental

A solution of (4S,4aR)-1-(3-chlorophenyl)-4-phenyl-4a,5-dihydrocyclopenta[c]pyran-3(4H)-one (0.5 g, 1.55 mmol s, 1 equiv.), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone in 10 ml anhydrous chloroform (with 0.5–1% ethanol as stabilizer) was refluxed under argon for 1.5 h. The reaction mixture was cooled to 0 °C and the brown precipitate was filtered-off. The filtrate was washed with water and brine, dried with MgSO4 and the solvent removed in vacuo at 30 °C. The crude product was purified by column chromatography on silica gel (petroleum ether/diethyl ether = 2:1) to afford the major product 1-(3-chlorophenyl)-4-phenylcyclopenta[c]pyran-3(5H)-one (0.094 g, 19%) as a yellow solid, and (Z)-(3-chlorophenyl)(2-ethoxy-5-(hydroxy(phenyl)methylene)cyclopenta-1,3-dien-1-yl)methanone (0.042 g, 8%) as a light brown solid. Crystals suitable for the diffraction experiment were obtained by slow evaporation from solution (pethroleum ether / diethyl ether = 1: 2) of the title compound.

Refinement

All C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and treated using a riding model with Uiso= 1.5Ueq(C) for methyl H atoms. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. Although O1 and O2 are chemically almost equivalent as protonation sites (the only difference is the position of a remote OEt and Cl substituents), the hydrogen was objectively localized and refined at O1. Its high thermal parameter is an attribute of a strong intramolecular H bond and our attempt to refine a model with the hydrogen disordered between the two alternative positions was unsuccessful (i.e. this is a single-well potential surface for the proton - at least at room temperature).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing the atom-labelling scheme and the intramolecular O1—H1···O2 hydrogen bond. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram for the crystal of the title compound viewed along c axis.

Crystal data

C21H17ClO3 F(000) = 736
Mr = 352.80 Dx = 1.369 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3314 reflections
a = 8.1369 (16) Å θ = 2.5–23.2°
b = 27.737 (6) Å µ = 0.24 mm1
c = 7.6709 (15) Å T = 297 K
β = 98.51 (3)° Block, yellow
V = 1712.2 (6) Å3 0.30 × 0.29 × 0.26 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3002 independent reflections
Radiation source: fine-focus sealed tube 2683 reflections with I > 2σ(I)
graphite Rint = 0.040
phi and ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −9→9
Tmin = 0.932, Tmax = 0.940 k = −32→32
15678 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0346P)2 + 1.0364P] where P = (Fo2 + 2Fc2)/3
3002 reflections (Δ/σ)max < 0.001
231 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.18516 (11) 0.68353 (3) 0.59613 (12) 0.0710 (3)
O1 0.4203 (2) 0.43102 (8) 0.1762 (3) 0.0672 (6)
O2 0.4234 (2) 0.51880 (8) 0.1798 (4) 0.0765 (7)
C15 0.1504 (3) 0.50390 (9) 0.2264 (3) 0.0368 (6)
C19 0.2853 (3) 0.53450 (10) 0.2149 (4) 0.0466 (7)
C14 0.1450 (3) 0.45072 (9) 0.2082 (3) 0.0374 (6)
C16 −0.0122 (3) 0.51749 (9) 0.2502 (3) 0.0352 (5)
C17 −0.1124 (3) 0.47648 (9) 0.2510 (3) 0.0424 (6)
H17 −0.2239 0.4761 0.2651 0.051*
C1 0.2831 (3) 0.58783 (9) 0.2398 (4) 0.0428 (6)
C2 0.2385 (3) 0.60855 (9) 0.3890 (4) 0.0452 (6)
H2 0.2033 0.5894 0.4757 0.054*
C18 −0.0174 (3) 0.43706 (9) 0.2275 (3) 0.0417 (6)
H18 −0.0553 0.4054 0.2246 0.050*
C3 0.2463 (3) 0.65780 (10) 0.4090 (4) 0.0486 (7)
C13 0.2684 (3) 0.41810 (10) 0.1820 (3) 0.0442 (6)
C7 0.2423 (3) 0.36553 (9) 0.1635 (3) 0.0435 (6)
C6 0.3382 (3) 0.61725 (11) 0.1155 (4) 0.0534 (7)
H6 0.3711 0.6037 0.0153 0.064*
C4 0.2980 (4) 0.68732 (11) 0.2852 (5) 0.0608 (8)
H4 0.3012 0.7206 0.3003 0.073*
C8 0.1071 (4) 0.34512 (10) 0.0608 (4) 0.0539 (7)
H8 0.0261 0.3649 −0.0002 0.065*
C5 0.3449 (4) 0.66657 (11) 0.1384 (5) 0.0634 (9)
H5 0.3818 0.6859 0.0531 0.076*
C12 0.3628 (4) 0.33490 (11) 0.2487 (4) 0.0604 (8)
H12 0.4573 0.3477 0.3157 0.073*
C10 0.2075 (5) 0.26619 (12) 0.1346 (5) 0.0813 (11)
H10 0.1952 0.2329 0.1260 0.098*
C9 0.0901 (5) 0.29571 (11) 0.0471 (5) 0.0705 (9)
H9 −0.0024 0.2826 −0.0225 0.085*
C11 0.3434 (5) 0.28564 (13) 0.2348 (5) 0.0786 (11)
H11 0.4240 0.2655 0.2946 0.094*
O3 −0.0580 (2) 0.56340 (6) 0.2675 (2) 0.0435 (4)
C20 −0.2232 (3) 0.57156 (10) 0.3075 (4) 0.0461 (7)
H20A −0.2425 0.5518 0.4070 0.055*
H20B −0.3049 0.5631 0.2070 0.055*
C21 −0.2378 (4) 0.62365 (11) 0.3506 (4) 0.0577 (8)
H21A −0.1538 0.6320 0.4475 0.087*
H21B −0.3456 0.6298 0.3825 0.087*
H21C −0.2234 0.6428 0.2497 0.087*
H1 0.436 (5) 0.4691 (17) 0.188 (6) 0.127 (16)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0812 (6) 0.0519 (5) 0.0806 (6) 0.0001 (4) 0.0148 (4) −0.0210 (4)
O1 0.0454 (12) 0.0493 (13) 0.1120 (19) 0.0028 (10) 0.0289 (12) −0.0124 (12)
O2 0.0396 (11) 0.0527 (13) 0.145 (2) −0.0082 (10) 0.0392 (13) −0.0193 (14)
C15 0.0341 (13) 0.0366 (14) 0.0405 (14) −0.0013 (10) 0.0079 (11) −0.0027 (11)
C19 0.0372 (15) 0.0462 (16) 0.0584 (17) −0.0032 (12) 0.0133 (13) −0.0069 (13)
C14 0.0377 (14) 0.0361 (14) 0.0391 (14) −0.0024 (11) 0.0080 (11) 0.0017 (11)
C16 0.0337 (12) 0.0357 (14) 0.0363 (13) −0.0013 (11) 0.0054 (10) 0.0005 (11)
C17 0.0321 (13) 0.0446 (15) 0.0516 (16) −0.0043 (11) 0.0100 (11) 0.0035 (12)
C1 0.0298 (13) 0.0419 (15) 0.0571 (17) −0.0047 (11) 0.0079 (12) −0.0031 (13)
C2 0.0381 (14) 0.0407 (15) 0.0570 (17) −0.0072 (12) 0.0082 (12) 0.0003 (13)
C18 0.0439 (15) 0.0341 (14) 0.0479 (15) −0.0064 (11) 0.0093 (12) 0.0007 (11)
C3 0.0394 (15) 0.0409 (16) 0.0636 (18) −0.0024 (12) 0.0011 (13) −0.0041 (14)
C13 0.0442 (15) 0.0457 (16) 0.0442 (15) 0.0018 (12) 0.0116 (12) −0.0026 (12)
C7 0.0525 (16) 0.0415 (15) 0.0398 (15) 0.0057 (13) 0.0180 (12) −0.0011 (12)
C6 0.0431 (15) 0.0594 (19) 0.0591 (18) −0.0100 (14) 0.0121 (13) −0.0015 (14)
C4 0.0570 (18) 0.0378 (16) 0.085 (2) −0.0051 (14) 0.0036 (17) 0.0043 (16)
C8 0.0642 (19) 0.0423 (16) 0.0556 (18) 0.0028 (14) 0.0106 (15) −0.0011 (13)
C5 0.067 (2) 0.0508 (19) 0.074 (2) −0.0106 (16) 0.0143 (17) 0.0181 (16)
C12 0.0607 (19) 0.0574 (19) 0.064 (2) 0.0195 (15) 0.0121 (15) 0.0002 (15)
C10 0.115 (3) 0.0354 (18) 0.100 (3) 0.008 (2) 0.038 (3) 0.0013 (18)
C9 0.087 (2) 0.0418 (18) 0.083 (2) −0.0044 (17) 0.0135 (19) −0.0096 (17)
C11 0.096 (3) 0.056 (2) 0.088 (3) 0.035 (2) 0.026 (2) 0.0172 (19)
O3 0.0324 (9) 0.0378 (10) 0.0620 (12) −0.0001 (8) 0.0133 (8) −0.0033 (8)
C20 0.0316 (13) 0.0542 (17) 0.0541 (16) 0.0054 (12) 0.0111 (12) −0.0029 (13)
C21 0.0549 (18) 0.0573 (19) 0.0633 (19) 0.0160 (14) 0.0166 (15) −0.0047 (15)

Geometric parameters (Å, °)

Cl1—C3 1.740 (3) C7—C12 1.385 (4)
O1—C13 1.294 (3) C6—C5 1.379 (4)
O1—H1 1.07 (5) C6—H6 0.9300
O2—C19 1.271 (3) C4—C5 1.369 (5)
O2—H1 1.38 (5) C4—H4 0.9300
C15—C19 1.400 (3) C8—C9 1.380 (4)
C15—C16 1.414 (3) C8—H8 0.9300
C15—C14 1.482 (3) C5—H5 0.9300
C19—C1 1.492 (4) C12—C11 1.378 (5)
C14—C13 1.388 (3) C12—H12 0.9300
C14—C18 1.404 (3) C10—C9 1.358 (5)
C16—O3 1.339 (3) C10—C11 1.361 (5)
C16—C17 1.400 (3) C10—H10 0.9300
C17—C18 1.366 (4) C9—H9 0.9300
C17—H17 0.9300 C11—H11 0.9300
C1—C2 1.376 (4) O3—C20 1.440 (3)
C1—C6 1.379 (4) C20—C21 1.491 (4)
C2—C3 1.375 (4) C20—H20A 0.9700
C2—H2 0.9300 C20—H20B 0.9700
C18—H18 0.9300 C21—H21A 0.9600
C3—C4 1.366 (4) C21—H21B 0.9600
C13—C7 1.477 (4) C21—H21C 0.9600
C7—C8 1.377 (4)
C13—O1—H1 112 (2) C5—C6—H6 119.7
C19—O2—H1 113.3 (18) C1—C6—H6 119.7
C19—C15—C16 127.1 (2) C3—C4—C5 118.2 (3)
C19—C15—C14 127.6 (2) C3—C4—H4 120.9
C16—C15—C14 105.2 (2) C5—C4—H4 120.9
O2—C19—C15 122.1 (2) C7—C8—C9 121.0 (3)
O2—C19—C1 113.2 (2) C7—C8—H8 119.5
C15—C19—C1 124.7 (2) C9—C8—H8 119.5
C13—C14—C18 123.5 (2) C4—C5—C6 120.7 (3)
C13—C14—C15 130.6 (2) C4—C5—H5 119.6
C18—C14—C15 105.9 (2) C6—C5—H5 119.6
O3—C16—C17 127.0 (2) C11—C12—C7 120.5 (3)
O3—C16—C15 123.1 (2) C11—C12—H12 119.8
C17—C16—C15 109.9 (2) C7—C12—H12 119.8
C18—C17—C16 108.0 (2) C9—C10—C11 119.6 (3)
C18—C17—H17 126.0 C9—C10—H10 120.2
C16—C17—H17 126.0 C11—C10—H10 120.2
C2—C1—C6 118.7 (3) C10—C9—C8 120.4 (3)
C2—C1—C19 122.0 (2) C10—C9—H9 119.8
C6—C1—C19 119.1 (2) C8—C9—H9 119.8
C3—C2—C1 119.6 (3) C10—C11—C12 120.7 (3)
C3—C2—H2 120.2 C10—C11—H11 119.6
C1—C2—H2 120.2 C12—C11—H11 119.6
C17—C18—C14 111.0 (2) C16—O3—C20 116.93 (19)
C17—C18—H18 124.5 O3—C20—C21 107.9 (2)
C14—C18—H18 124.5 O3—C20—H20A 110.1
C4—C3—C2 122.1 (3) C21—C20—H20A 110.1
C4—C3—Cl1 118.9 (2) O3—C20—H20B 110.1
C2—C3—Cl1 119.0 (2) C21—C20—H20B 110.1
O1—C13—C14 122.6 (2) H20A—C20—H20B 108.4
O1—C13—C7 113.2 (2) C20—C21—H21A 109.5
C14—C13—C7 124.1 (2) C20—C21—H21B 109.5
C8—C7—C12 117.8 (3) H21A—C21—H21B 109.5
C8—C7—C13 123.5 (2) C20—C21—H21C 109.5
C12—C7—C13 118.6 (3) H21A—C21—H21C 109.5
C5—C6—C1 120.7 (3) H21B—C21—H21C 109.5
C16—C15—C19—O2 −174.5 (3) C18—C14—C13—O1 −175.3 (3)
C14—C15—C19—O2 2.5 (5) C15—C14—C13—O1 2.9 (4)
C16—C15—C19—C1 4.9 (4) C18—C14—C13—C7 2.8 (4)
C14—C15—C19—C1 −178.2 (3) C15—C14—C13—C7 −179.0 (3)
C19—C15—C14—C13 2.5 (5) O1—C13—C7—C8 −137.3 (3)
C16—C15—C14—C13 179.9 (3) C14—C13—C7—C8 44.5 (4)
C19—C15—C14—C18 −179.1 (3) O1—C13—C7—C12 40.3 (4)
C16—C15—C14—C18 −1.6 (3) C14—C13—C7—C12 −137.9 (3)
C19—C15—C16—O3 −0.9 (4) C2—C1—C6—C5 −1.4 (4)
C14—C15—C16—O3 −178.4 (2) C19—C1—C6—C5 −177.1 (3)
C19—C15—C16—C17 178.7 (3) C2—C3—C4—C5 −0.8 (4)
C14—C15—C16—C17 1.2 (3) Cl1—C3—C4—C5 −179.7 (2)
O3—C16—C17—C18 179.3 (2) C12—C7—C8—C9 1.7 (4)
C15—C16—C17—C18 −0.3 (3) C13—C7—C8—C9 179.3 (3)
O2—C19—C1—C2 −126.2 (3) C3—C4—C5—C6 0.8 (5)
C15—C19—C1—C2 54.4 (4) C1—C6—C5—C4 0.3 (5)
O2—C19—C1—C6 49.3 (4) C8—C7—C12—C11 −2.2 (4)
C15—C19—C1—C6 −130.1 (3) C13—C7—C12—C11 −180.0 (3)
C6—C1—C2—C3 1.4 (4) C11—C10—C9—C8 −0.6 (5)
C19—C1—C2—C3 176.9 (2) C7—C8—C9—C10 −0.3 (5)
C16—C17—C18—C14 −0.8 (3) C9—C10—C11—C12 0.1 (6)
C13—C14—C18—C17 −179.9 (2) C7—C12—C11—C10 1.3 (5)
C15—C14—C18—C17 1.5 (3) C17—C16—O3—C20 6.2 (4)
C1—C2—C3—C4 −0.3 (4) C15—C16—O3—C20 −174.3 (2)
C1—C2—C3—Cl1 178.6 (2) C16—O3—C20—C21 170.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 1.07 (5) 1.38 (5) 2.435 (3) 168 (5)
C20—H20B···O2i 0.97 2.51 3.246 (3) 133

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2041).

References

  1. Brandenburg, K. & Putz, H. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2000). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Christl, M., Bien, N., Bodenschatz, G., Feineis, E., Hegmann, J., Hofmann, C., Mertelmeyer, S., Ostheimer, J., Sammtleben, F., Wehner, S., Peters, E.-M., Peters, K., Pfeiffer, M. & Stalke, D. (1998). Chem. Commun. pp. 2387–2389.
  4. Dong, Y.-B., Geng, Y., Ma, J.-P. & Huang, R.-Q. (2006). Organometallics, 25, 447–462.
  5. Dong, Y.-B., Wang, P. & Huang, R.-Q. (2004). Inorg. Chem. 43, 4727–4739. [DOI] [PubMed]
  6. Ferguson, G., Marsh, W. C., Restivo, R. J. & Lloyd, D. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 998–1004.
  7. Hong, B.-C., Chen, F.-L., Chen, S.-H., Liao, J.-H. & Lee, G.-H. (2005). Org. Lett. 7, 557–560. [DOI] [PubMed]
  8. Kondo, K., Goda, H., Takemoto, K., Aso, H., Sasaki, T., Kawakami, K., Yoshida, H. & Yoshida, K. (1992). J. Mater. Chem. 2, 1097–1102.
  9. Li, J., Ma, J.-P., Liu, F., Wu, X.-W., Dong, Y.-B. & Huang, R.-Q. (2008). Organometallics, 27, 5446–5452.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Snyder, C. A., Selegue, J. P., Tice, N. C., Wallace, C. E., Blankenbuehler, M. T., Parkin, S., Allen, K. D. E. & Beck, R. T. (2005). J. Am. Chem. Soc. 127, 15010–15011. [DOI] [PubMed]
  12. Vicente, J., Abad, J., Gil-Rubio, J. & Jones, P. G. (1995). Organometallics, 14, 2677–2688.
  13. Wang, P., Dong, Y.-B., Ma, J.-P., Huang, R.-Q. & Smith, M. S. (2005). Cryst. Growth Des. 5, 701–706.
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811055279/ld2041sup1.cif

e-68-0o310-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055279/ld2041Isup2.hkl

e-68-0o310-Isup2.hkl (147.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811055279/ld2041Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES