Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):o312–o313. doi: 10.1107/S1600536812000232

1,1′-[Imidazolidine-1,3-diylbis(methyl­ene)]bis­(1H-benzotriazole)

Augusto Rivera a,*, Diego Quiroga a, Jaime Ríos-Motta a, Karla Fejfarová b, Michal Dušek b
PMCID: PMC3275003  PMID: 22346948

Abstract

In the title compound, C17H18N8, the imidazolidine ring adopts an envelope conformation with the substituents at the N atoms in trans positions with respect to the central ring. The dihedral angle between the two benzotriazole rings is 71.65 (10)°. In the crystal, non-classical C—H⋯N inter­actions link the mol­ecules into helical chains along the b axis. The crystal packing is further stabilized by weak C—H⋯π inter­actions.

Related literature

For related structures, see: Rivera et al. (2011a,b ). For the synthesis of the title compound, see: Rivera et al. (2004); Katriztky et al. (1990). For ring conformations, see Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the anomeric effect, see: Dabbagh et al. (2002); Selámbaron et al. (2001); Zefirov & Shekhtman (1971); Hendrickson (1961).graphic file with name e-68-0o312-scheme1.jpg

Experimental

Crystal data

  • C17H18N8

  • M r = 334.4

  • Monoclinic, Inline graphic

  • a = 11.8609 (6) Å

  • b = 4.6429 (2) Å

  • c = 14.4712 (8) Å

  • β = 93.053 (4)°

  • V = 795.78 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 120 K

  • 0.43 × 0.18 × 0.10 mm

Data collection

  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.378, T max = 1

  • 10081 measured reflections

  • 1609 independent reflections

  • 1541 reflections with I > 3σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.073

  • S = 1.52

  • 1609 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000232/bt5768sup1.cif

e-68-0o312-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000232/bt5768Isup2.hkl

e-68-0o312-Isup2.hkl (62.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000232/bt5768Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the N6/N7/N8/C13/C12 aromatic ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N5i 0.96 2.60 3.552 (2) 173
C11—H11bCg3ii 0.96 2.86 3.394 (2) 116

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

supplementary crystallographic information

Comment

The anomeric effect is a stereoelectronic effect observed in various heterocyclic compounds and some acyclic structures with a great deal of importance due its implications on the molecular structure, conformational properties and reactivity of organic compounds (Zefirov & Shekhtman, 1971; Selámbaron, et al., 2001; Dabbagh, et al., 2002). Our investigations on the synthesis and structural studies of heterocyclic compounds have evidenced the occurrence of a n(N)→σ* (C—N) electron delocalization (Rivera et al., 2011a, 2011b). In this article, we discussed the crystal structure of the title compound, which can be synthetized by a three component condensation between ethylenediamine, formaldehyde and benzotriazole (Katriztky et al., 1990) or using a novel methodology involving a Mannich type reaction between the aminal cage 1,3,6,8-tetrazatricyclo[4.4.1.13,8]dodecane and benzotriazole (Rivera et al., 2004). By recrystallization from ethanol we obtained suitable crystals for X-rays analysis.

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. The anomeric effect is evidenced by the C—N bond lengths, which are longer as C11—N6 [1.484 (2) Å] and shorter as N2—C11 [1.433 (2) Å] than the expected bond length of 1.469 Å (Allen et al., 1987). Moreover, this effect is confirmed by the bond angles around N2 with a Σα = 339.43 (13) which are distorted from a normal tetrahedral geometry in a five-membered ring (Hendrickson, 1961), whereas for N1 the bond lenghts and angles are within normal ranges. These results are in a good agreement with the crystal structures of related structures (Rivera et al., 2011a, 2011b).

The imidazolidine ring adopts an envelope conformation on C1 as seen in the puckering parameters Q(2) = 0.3953 (17) Å and φ2 = 40.3 (2) ° (Cremer & Pople, 1975), with endocyclic bond angles between 103.06 (13) ° and 106.55 (13) °. The geometry of the N—C—C—N moiety is close to the planar in a syn-periplanar conformation evidenced by the N2—C2—C3—N1 torsion angle [3.05 (17) °]. The benzotriazolylmethyl substituents are arranged trans respect the imidazolidine ring, which is preferred because the nitrogen lone pairs are oriented anti-axial to avoid repulsion electronic repulsions. The benzotriazole rings makes an angle of 38.47 (10) ° and 78.88 (10) ° with the mean plane of imidazolidine ring. The dihedral angle between the two benzotriazole rings is 71.65 (10) °. Chains of molecules in the title compound are linked along the b direction by non-classical intermolecular hydrogen bonds C17—H17···N5 interactions [2.60 Å] which link neighboring molecules. The crystal packing is further stabilized by weak C—H···π interactions.

Experimental

For the originally reported synthesis, see: Rivera et al. (2004). Single crystals of the title compound (I) were grown from ethanol by recrystallization.

Refinement

All H atoms atoms were positioned geometrically and treated as riding on their parent atoms. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom. As the structure contains only light atoms, the Friedel-pair reflections were merged and the Flack parameter has not been determined.

Figures

Fig. 1.

Fig. 1.

A view of (I) with the numbering scheme.displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing of the molecules of the title compound view along b axis.

Crystal data

C17H18N8 F(000) = 352
Mr = 334.4 Dx = 1.395 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2yb Cell parameters from 7090 reflections
a = 11.8609 (6) Å θ = 3.1–66.9°
b = 4.6429 (2) Å µ = 0.74 mm1
c = 14.4712 (8) Å T = 120 K
β = 93.053 (4)° Prism, colourless
V = 795.78 (7) Å3 0.43 × 0.18 × 0.10 mm
Z = 2

Data collection

Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector 1609 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 1541 reflections with I > 3σ(I)
mirror Rint = 0.030
Detector resolution: 10.3784 pixels mm-1 θmax = 67.0°, θmin = 3.1°
Rotation method data acquisition using ω scans h = −14→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −5→5
Tmin = 0.378, Tmax = 1 l = −17→16
10081 measured reflections

Refinement

Refinement on F2 73 constraints
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.073 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.52 (Δ/σ)max = 0.005
1609 reflections Δρmax = 0.09 e Å3
226 parameters Δρmin = −0.11 e Å3
0 restraints

Special details

Experimental. CrysAlisPro (Agilent, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.21591 (11) 0.2699 (3) 0.93068 (9) 0.0235 (4)
N2 0.26794 (11) 0.5272 (3) 1.06164 (10) 0.0238 (4)
N3 0.09989 (11) 0.3594 (3) 0.79499 (9) 0.0235 (4)
N4 −0.01384 (12) 0.4004 (4) 0.78915 (11) 0.0290 (4)
N5 −0.05795 (11) 0.2425 (4) 0.72197 (10) 0.0298 (5)
N6 0.40908 (11) 0.4060 (3) 1.18741 (10) 0.0239 (4)
N7 0.50606 (11) 0.2991 (4) 1.15561 (10) 0.0280 (4)
N8 0.54874 (11) 0.1110 (4) 1.21481 (10) 0.0279 (4)
C1 0.31519 (14) 0.3661 (4) 0.98560 (11) 0.0264 (5)
C2 0.17294 (13) 0.3532 (4) 1.09029 (11) 0.0248 (5)
C3 0.13569 (13) 0.1890 (4) 1.00110 (11) 0.0239 (5)
C4 0.17205 (15) 0.4928 (4) 0.86759 (12) 0.0263 (5)
C5 0.12961 (13) 0.1659 (4) 0.73030 (11) 0.0215 (5)
C6 0.02769 (13) 0.0916 (4) 0.68333 (12) 0.0253 (5)
C7 0.02635 (16) −0.1107 (4) 0.61123 (12) 0.0314 (5)
C8 0.12773 (17) −0.2263 (5) 0.58977 (12) 0.0354 (6)
C9 0.23000 (15) −0.1486 (5) 0.63788 (12) 0.0308 (5)
C10 0.23362 (14) 0.0484 (4) 0.70895 (11) 0.0251 (5)
C11 0.34550 (15) 0.6304 (4) 1.13345 (12) 0.0286 (5)
C12 0.38817 (13) 0.2843 (4) 1.27059 (11) 0.0228 (5)
C13 0.47863 (13) 0.0943 (4) 1.28781 (12) 0.0232 (5)
C14 0.48715 (14) −0.0715 (4) 1.36880 (12) 0.0270 (5)
C15 0.40331 (15) −0.0378 (4) 1.42939 (13) 0.0311 (5)
C16 0.31195 (15) 0.1530 (5) 1.41080 (13) 0.0329 (6)
C17 0.30163 (14) 0.3172 (4) 1.33186 (12) 0.0293 (5)
H1a 0.358632 0.493853 0.949314 0.0316*
H1b 0.355874 0.201865 1.010035 0.0316*
H2a 0.113022 0.477804 1.107635 0.0298*
H2b 0.199161 0.21839 1.136922 0.0298*
H3a 0.140331 −0.014517 1.012342 0.0287*
H3b 0.060918 0.24844 0.980747 0.0287*
H4a 0.128774 0.628658 0.901023 0.0316*
H4b 0.233758 0.58913 0.840354 0.0316*
H7 −0.042768 −0.165557 0.578371 0.0376*
H8 0.129465 −0.364408 0.540509 0.0424*
H9 0.299061 −0.236079 0.620438 0.037*
H10 0.302981 0.101822 0.741735 0.0302*
H11a 0.30616 0.75146 1.174811 0.0343*
H11b 0.397607 0.762446 1.107664 0.0343*
H14 0.54877 −0.2024 1.381195 0.0325*
H15 0.406631 −0.146438 1.485921 0.0373*
H16 0.254861 0.1683 1.45514 0.0395*
H17 0.239268 0.445844 1.319532 0.0351*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0240 (6) 0.0259 (8) 0.0205 (7) −0.0003 (6) −0.0004 (5) 0.0012 (6)
N2 0.0261 (7) 0.0225 (7) 0.0223 (7) −0.0021 (6) −0.0037 (5) 0.0009 (6)
N3 0.0221 (6) 0.0253 (7) 0.0229 (7) 0.0011 (6) −0.0008 (5) 0.0020 (6)
N4 0.0230 (7) 0.0315 (8) 0.0326 (8) 0.0042 (7) 0.0022 (6) 0.0053 (7)
N5 0.0218 (7) 0.0346 (9) 0.0325 (8) −0.0010 (6) −0.0027 (5) 0.0075 (7)
N6 0.0235 (6) 0.0241 (8) 0.0235 (7) −0.0008 (6) −0.0032 (5) −0.0013 (6)
N7 0.0227 (6) 0.0338 (9) 0.0269 (7) −0.0032 (6) −0.0025 (5) −0.0021 (7)
N8 0.0221 (7) 0.0336 (9) 0.0275 (7) 0.0006 (6) −0.0023 (5) −0.0019 (7)
C1 0.0233 (7) 0.0334 (10) 0.0224 (8) −0.0017 (8) 0.0009 (6) 0.0024 (8)
C2 0.0212 (7) 0.0296 (9) 0.0236 (8) 0.0009 (7) 0.0008 (6) −0.0008 (7)
C3 0.0233 (8) 0.0239 (9) 0.0243 (8) −0.0025 (7) −0.0007 (6) 0.0003 (7)
C4 0.0323 (8) 0.0244 (9) 0.0219 (8) −0.0026 (8) −0.0032 (6) −0.0010 (7)
C5 0.0234 (7) 0.0221 (9) 0.0187 (7) −0.0006 (7) −0.0008 (6) 0.0035 (7)
C6 0.0240 (8) 0.0260 (9) 0.0255 (8) −0.0022 (7) −0.0033 (6) 0.0080 (7)
C7 0.0360 (9) 0.0301 (10) 0.0267 (9) −0.0058 (8) −0.0098 (7) 0.0031 (8)
C8 0.0514 (11) 0.0314 (10) 0.0228 (8) −0.0009 (9) −0.0021 (7) −0.0015 (8)
C9 0.0332 (8) 0.0330 (11) 0.0264 (8) 0.0063 (8) 0.0038 (6) 0.0011 (8)
C10 0.0229 (8) 0.0291 (10) 0.0235 (8) −0.0004 (7) 0.0009 (6) 0.0029 (7)
C11 0.0348 (9) 0.0208 (9) 0.0288 (9) −0.0039 (8) −0.0109 (7) 0.0012 (8)
C12 0.0224 (7) 0.0225 (9) 0.0228 (8) −0.0029 (7) −0.0062 (6) −0.0028 (7)
C13 0.0193 (7) 0.0246 (9) 0.0253 (8) −0.0022 (7) −0.0032 (6) −0.0039 (7)
C14 0.0262 (8) 0.0241 (9) 0.0299 (9) 0.0014 (7) −0.0066 (6) 0.0000 (7)
C15 0.0322 (9) 0.0317 (11) 0.0289 (9) −0.0030 (8) −0.0028 (7) 0.0043 (8)
C16 0.0292 (8) 0.0394 (11) 0.0303 (9) −0.0009 (8) 0.0039 (7) −0.0004 (9)
C17 0.0238 (8) 0.0336 (11) 0.0302 (9) 0.0041 (8) −0.0013 (6) −0.0026 (8)

Geometric parameters (Å, °)

N1—C1 1.455 (2) C4—H4b 0.96
N1—C3 1.479 (2) C5—C6 1.398 (2)
N1—C4 1.458 (2) C5—C10 1.398 (2)
N2—C1 1.466 (2) C6—C7 1.403 (3)
N2—C2 1.464 (2) C7—C8 1.368 (3)
N2—C11 1.433 (2) C7—H7 0.96
N3—N4 1.3604 (19) C8—C9 1.413 (3)
N3—C4 1.458 (2) C8—H8 0.96
N3—C5 1.357 (2) C9—C10 1.376 (3)
N4—N5 1.305 (2) C9—H9 0.96
N5—C6 1.377 (2) C10—H10 0.96
N6—N7 1.355 (2) C11—H11a 0.96
N6—C11 1.484 (2) C11—H11b 0.96
N6—C12 1.364 (2) C12—C13 1.401 (2)
N7—N8 1.307 (2) C12—C17 1.400 (2)
N8—C13 1.381 (2) C13—C14 1.402 (2)
C1—H1a 0.96 C14—C15 1.369 (3)
C1—H1b 0.96 C14—H14 0.96
C2—C3 1.543 (2) C15—C16 1.414 (3)
C2—H2a 0.96 C15—H15 0.96
C2—H2b 0.96 C16—C17 1.373 (3)
C3—H3a 0.96 C16—H16 0.96
C3—H3b 0.96 C17—H17 0.96
C4—H4a 0.96
C1—N1—C3 103.48 (12) N3—C5—C10 132.45 (15)
C1—N1—C4 112.04 (14) C6—C5—C10 123.13 (15)
C3—N1—C4 112.98 (13) N5—C6—C5 108.33 (15)
C1—N2—C2 105.19 (14) N5—C6—C7 131.54 (15)
C1—N2—C11 117.30 (13) C5—C6—C7 120.12 (16)
C2—N2—C11 116.94 (13) C6—C7—C8 117.14 (16)
N4—N3—C4 121.83 (14) C6—C7—H7 121.4291
N4—N3—C5 110.05 (13) C8—C7—H7 121.4287
C4—N3—C5 127.90 (14) C7—C8—C9 122.02 (18)
N3—N4—N5 108.94 (14) C7—C8—H8 118.9882
N4—N5—C6 108.26 (13) C9—C8—H8 118.9897
N7—N6—C11 119.68 (14) C8—C9—C10 122.01 (17)
N7—N6—C12 110.21 (14) C8—C9—H9 118.9967
C11—N6—C12 130.08 (14) C10—C9—H9 118.9971
N6—N7—N8 109.17 (13) C5—C10—C9 115.58 (15)
N7—N8—C13 108.11 (14) C5—C10—H10 122.2124
N1—C1—N2 103.65 (13) C9—C10—H10 122.2126
N1—C1—H1a 109.4707 N2—C11—N6 115.81 (15)
N1—C1—H1b 109.4711 N2—C11—H11a 109.4718
N2—C1—H1a 109.4712 N2—C11—H11b 109.4704
N2—C1—H1b 109.4715 N6—C11—H11a 109.4709
H1a—C1—H1b 114.7236 N6—C11—H11b 109.4712
N2—C2—C3 103.06 (13) H11a—C11—H11b 102.2888
N2—C2—H2a 109.4714 N6—C12—C13 104.13 (14)
N2—C2—H2b 109.4715 N6—C12—C17 133.44 (16)
C3—C2—H2a 109.4717 C13—C12—C17 122.43 (16)
C3—C2—H2b 109.4711 N8—C13—C12 108.38 (15)
H2a—C2—H2b 115.2 N8—C13—C14 130.61 (16)
N1—C3—C2 106.55 (13) C12—C13—C14 121.01 (15)
N1—C3—H3a 109.4715 C13—C14—C15 116.76 (16)
N1—C3—H3b 109.4715 C13—C14—H14 121.6205
C2—C3—H3a 109.4712 C15—C14—H14 121.6212
C2—C3—H3b 109.4712 C14—C15—C16 121.66 (17)
H3a—C3—H3b 112.2427 C14—C15—H15 119.1684
N1—C4—N3 109.01 (15) C16—C15—H15 119.1674
N1—C4—H4a 109.4712 C15—C16—C17 122.64 (17)
N1—C4—H4b 109.4703 C15—C16—H16 118.6785
N3—C4—H4a 109.4717 C17—C16—H16 118.6776
N3—C4—H4b 109.4721 C12—C17—C16 115.49 (16)
H4a—C4—H4b 109.9289 C12—C17—H17 122.2546
N3—C5—C6 104.42 (14) C16—C17—H17 122.2552
N2—C2—C3—N1 3.05 (17)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the N6/N7/N8/C13/C12 aromatic ring.
D—H···A D—H H···A D···A D—H···A
C17—H17···N5i 0.96 2.60 3.552 (2) 173
C11—H11b···Cg3ii 0.96 2.86 3.394 (2) 116

Symmetry codes: (i) −x, y+1/2, −z+2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5768).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact, Bonn, Germany.
  4. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Dabbagh, H. A., Modarresi-Alam, A. R., Tadjarodi, A. & Taeb, A. (2002). Tetrahedron, 58, 2621–2625.
  7. Hendrickson, J. B. (1961). J. Am. Chem. Soc. 83, 4537–4547.
  8. Katriztky, A. R., Pilarski, B. & Urogdi, L. (1990). J. Chem. Soc., Perkin Trans. 1, pp. 541–547.
  9. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.
  10. Rivera, A., Maldonado, M., Casas, J. L., Dušek, M. & Fejfarová, K. (2011a). Acta Cryst. E67, o990. [DOI] [PMC free article] [PubMed]
  11. Rivera, A., Núñez, M. E., Maldonado, M. & Joseph-Nathan, P. (2004). Heterocycl. Commun. 10, 77–80.
  12. Rivera, A., Pacheco, D. J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011b). Acta Cryst. E67, o3071. [DOI] [PMC free article] [PubMed]
  13. Selámbaron, J., Monge, S., Carré, F., Fruchier, A., Roque, J. P. & Pavia, A. A. (2001). Carbohydr. Res. 330, 43–51. [DOI] [PubMed]
  14. Zefirov, N. S. & Shekhtman, N. M. (1971). Russ. Chem. Rev. 40, 315–329.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000232/bt5768sup1.cif

e-68-0o312-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000232/bt5768Isup2.hkl

e-68-0o312-Isup2.hkl (62.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000232/bt5768Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES