Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):o314. doi: 10.1107/S1600536811056121

N′-[(1E)-(4-Fluoro­phen­yl)methyl­idene]thio­phene-2-carbohydrazide

Amer M Alanazi a, Siham Lahsasni a, Ali A El-Emam a, Seik Weng Ng b,c,*
PMCID: PMC3275004  PMID: 22346949

Abstract

In the title compound, C12H9FN2OS, the thienyl ring is disordered over two positions, with the S atom of the major component [occupancy = 87.08 (16)°] oriented towards the ortho-H atom of the benzene ring. The mol­ecule is nearly planar, the dihedral angle between the thio­phene and benzene rings being 13.0 (2)° in the major component. The azomethine C=N double bond in the mol­ecule is of an E configuration. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For the 4-chloro and 4-bromo derivatives, see: Jiang (2010a ,b ).graphic file with name e-68-0o314-scheme1.jpg

Experimental

Crystal data

  • C12H9FN2OS

  • M r = 248.27

  • Monoclinic, Inline graphic

  • a = 13.3076 (11) Å

  • b = 5.6015 (4) Å

  • c = 15.3062 (12) Å

  • β = 104.166 (9)°

  • V = 1106.27 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.05 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.906, T max = 0.986

  • 4609 measured reflections

  • 2532 independent reflections

  • 1917 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.108

  • S = 1.06

  • 2532 reflections

  • 171 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811056121/xu5417sup1.cif

e-68-0o314-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056121/xu5417Isup2.hkl

e-68-0o314-Isup2.hkl (124.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (2) 1.99 (3) 2.893 (2) 176 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

2-Thienoylhydrazide forms a large number of Schiff base derivatives with substituted benzaldehydes; among those whose crystal structures have been reported are the 4-chloro and 4-bromo derivatives (Jiang, 2010a, 2010b). However, the 4-fluoro analog (Scheme I) is disordered in respect of the thienyl ring (Fig. 1). The azomethine double-bond in the approximately planar C12H9FN2OS molecule is of an E configuration. The thienyl ring is disordered over two positions, with the S atom of the major component (87.1 (2) %) oriented towards the ortho-H atom of the benzene ring. Two molecules are linked across a center-of-inversion by an N–H···O hydrogen bond to generate a dimer (Table 1).

Experimental

2-Thienoylhydrazide (1.42 g, 0.01 mol) and 4-fluorobenzaldehyde (1.24 g, 0.01 mol) dissolved in ethanol (8 ml) was heated for 1 h. The product was collected and recystallized from ethanol to yield the Schiff base in 90% yield, m.p. 447–448 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was located in a difference Fourier map, and was refined freely refined.

The thienyl ring is disordered over two positions in respect of four of the five atoms, with major component being 87.1 (2) %. Pairs of C–C and C–S bond distances were restrained to within 0.0 Å of each other. The temperature factors of C3' was set to those of S1 (as were these pairs: C2' to C1, C1' to C2 and S1' to C3).

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C12H9FN2OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.

Crystal data

C12H9FN2OS F(000) = 512
Mr = 248.27 Dx = 1.491 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1715 reflections
a = 13.3076 (11) Å θ = 2.7–27.5°
b = 5.6015 (4) Å µ = 0.29 mm1
c = 15.3062 (12) Å T = 100 K
β = 104.166 (9)° Prism, colorless
V = 1106.27 (15) Å3 0.35 × 0.15 × 0.05 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2532 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1917 reflections with I > 2σ(I)
Mirror Rint = 0.037
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.7°
ω scan h = −13→17
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −7→4
Tmin = 0.906, Tmax = 0.986 l = −19→11
4609 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.113P] where P = (Fo2 + 2Fc2)/3
2532 reflections (Δ/σ)max = 0.001
171 parameters Δρmax = 0.30 e Å3
5 restraints Δρmin = −0.28 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.72252 (5) 0.67192 (12) 0.49050 (4) 0.01785 (19) 0.8708 (16)
S1' 0.5631 (6) 0.5848 (19) 0.3160 (5) 0.0218 (7) 0.1292 (16)
F1 1.06801 (9) 0.4889 (2) 0.93514 (8) 0.0291 (3)
O1 0.49118 (10) 0.2092 (2) 0.40405 (9) 0.0203 (3)
N1 0.60280 (12) 0.2114 (3) 0.54014 (11) 0.0181 (4)
N2 0.68783 (12) 0.3050 (3) 0.59944 (11) 0.0164 (4)
C1 0.7215 (3) 0.8617 (10) 0.4025 (4) 0.0181 (7) 0.8708 (16)
H1A 0.7675 0.9928 0.4055 0.022* 0.8708 (16)
C2 0.6467 (8) 0.8018 (16) 0.3276 (5) 0.0203 (9) 0.8708 (16)
H2 0.6347 0.8863 0.2722 0.024* 0.8708 (16)
C3 0.5900 (3) 0.6034 (9) 0.3415 (3) 0.0218 (7) 0.8708 (16)
H3 0.5354 0.5381 0.2958 0.026* 0.8708 (16)
C1' 0.642 (6) 0.827 (12) 0.318 (4) 0.0203 (9) 0.13
H1' 0.6442 0.9298 0.2691 0.024* 0.1292 (16)
C2' 0.702 (3) 0.842 (8) 0.404 (3) 0.0181 (7) 0.13
H2' 0.7500 0.9690 0.4205 0.022* 0.1292 (16)
C3' 0.6923 (14) 0.671 (3) 0.4673 (13) 0.01785 (19) 0.13
H3' 0.7302 0.6679 0.5286 0.021* 0.1292 (16)
C4 0.61940 (14) 0.5099 (3) 0.42645 (12) 0.0166 (4)
C5 0.56736 (14) 0.3024 (3) 0.45575 (13) 0.0165 (4)
C6 0.71912 (15) 0.1929 (3) 0.67428 (13) 0.0169 (4)
H6 0.6836 0.0534 0.6854 0.020*
C7 0.80912 (14) 0.2777 (3) 0.74281 (12) 0.0162 (4)
C8 0.84780 (15) 0.1384 (3) 0.81905 (13) 0.0188 (4)
H8 0.8139 −0.0068 0.8264 0.023*
C9 0.93487 (16) 0.2074 (3) 0.88442 (13) 0.0227 (5)
H9 0.9613 0.1112 0.9360 0.027*
C10 0.98170 (15) 0.4193 (4) 0.87216 (13) 0.0199 (4)
C11 0.94486 (15) 0.5653 (3) 0.79870 (13) 0.0181 (4)
H11 0.9783 0.7121 0.7926 0.022*
C12 0.85802 (14) 0.4930 (3) 0.73393 (12) 0.0166 (4)
H12 0.8316 0.5913 0.6829 0.020*
H1 0.5728 (17) 0.078 (4) 0.5544 (15) 0.035 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0196 (4) 0.0175 (3) 0.0169 (4) −0.0051 (3) 0.0053 (2) −0.0012 (2)
S1' 0.010 (2) 0.0290 (13) 0.025 (2) −0.0022 (16) 0.0011 (14) 0.0011 (18)
F1 0.0230 (6) 0.0378 (7) 0.0222 (7) −0.0021 (6) −0.0027 (5) −0.0023 (6)
O1 0.0173 (7) 0.0236 (7) 0.0197 (7) −0.0040 (6) 0.0037 (6) −0.0009 (6)
N1 0.0172 (8) 0.0194 (9) 0.0174 (9) −0.0056 (7) 0.0035 (7) −0.0015 (7)
N2 0.0146 (8) 0.0165 (8) 0.0185 (9) −0.0005 (7) 0.0048 (7) −0.0025 (6)
C1 0.015 (2) 0.0156 (15) 0.0255 (11) −0.0038 (15) 0.0096 (15) 0.0012 (9)
C2 0.0175 (15) 0.022 (3) 0.023 (2) 0.004 (2) 0.0069 (15) 0.0076 (13)
C3 0.010 (2) 0.0290 (13) 0.025 (2) −0.0022 (16) 0.0011 (14) 0.0011 (18)
C1' 0.0175 (15) 0.022 (3) 0.023 (2) 0.004 (2) 0.0069 (15) 0.0076 (13)
C2' 0.015 (2) 0.0156 (15) 0.0255 (11) −0.0038 (15) 0.0096 (15) 0.0012 (9)
C3' 0.0196 (4) 0.0175 (3) 0.0169 (4) −0.0051 (3) 0.0053 (2) −0.0012 (2)
C4 0.0148 (9) 0.0168 (9) 0.0192 (10) 0.0011 (8) 0.0058 (8) −0.0020 (8)
C5 0.0151 (9) 0.0186 (10) 0.0169 (10) 0.0012 (8) 0.0062 (8) −0.0030 (8)
C6 0.0176 (10) 0.0153 (9) 0.0195 (10) −0.0010 (8) 0.0077 (8) 0.0006 (8)
C7 0.0181 (10) 0.0168 (9) 0.0159 (9) 0.0017 (8) 0.0084 (8) −0.0005 (7)
C8 0.0225 (10) 0.0151 (9) 0.0204 (10) −0.0016 (8) 0.0082 (9) 0.0013 (8)
C9 0.0280 (11) 0.0218 (10) 0.0174 (10) 0.0058 (9) 0.0036 (9) 0.0040 (8)
C10 0.0161 (9) 0.0268 (11) 0.0162 (10) 0.0004 (9) 0.0030 (8) −0.0043 (8)
C11 0.0200 (10) 0.0166 (10) 0.0195 (10) −0.0013 (8) 0.0083 (9) −0.0014 (8)
C12 0.0177 (10) 0.0177 (9) 0.0151 (9) 0.0034 (8) 0.0055 (8) 0.0013 (8)

Geometric parameters (Å, °)

S1—C1 1.714 (4) C2'—C3' 1.389 (11)
S1—C4 1.7346 (19) C2'—H2' 0.9500
S1'—C1' 1.713 (11) C3'—C4 1.361 (10)
S1'—C4 1.725 (6) C3'—H3' 0.9500
F1—C10 1.363 (2) C4—C5 1.478 (3)
O1—C5 1.238 (2) C6—C7 1.465 (3)
N1—C5 1.361 (2) C6—H6 0.9500
N1—N2 1.370 (2) C7—C12 1.392 (3)
N1—H1 0.90 (2) C7—C8 1.394 (3)
N2—C6 1.283 (2) C8—C9 1.388 (3)
C1—C2 1.363 (3) C8—H8 0.9500
C1—H1A 0.9500 C9—C10 1.374 (3)
C2—C3 1.388 (5) C9—H9 0.9500
C2—H2 0.9500 C10—C11 1.380 (3)
C3—C4 1.367 (4) C11—C12 1.386 (3)
C3—H3 0.9500 C11—H11 0.9500
C1'—C2' 1.362 (10) C12—H12 0.9500
C1'—H1' 0.9500
C1—S1—C4 91.55 (18) C5—C4—S1' 111.4 (3)
C1'—S1'—C4 93.3 (15) C3—C4—S1 109.9 (2)
C5—N1—N2 121.58 (17) C5—C4—S1 127.20 (14)
C5—N1—H1 118.1 (14) O1—C5—N1 119.21 (18)
N2—N1—H1 120.0 (14) O1—C5—C4 120.57 (17)
C6—N2—N1 116.04 (16) N1—C5—C4 120.22 (17)
C2—C1—S1 111.8 (3) N2—C6—C7 120.68 (17)
C2—C1—H1A 124.1 N2—C6—H6 119.7
S1—C1—H1A 124.1 C7—C6—H6 119.7
C1—C2—C3 112.4 (4) C12—C7—C8 118.76 (18)
C1—C2—H2 123.8 C12—C7—C6 122.06 (17)
C3—C2—H2 123.8 C8—C7—C6 119.18 (17)
C4—C3—C2 114.3 (3) C9—C8—C7 121.31 (18)
C4—C3—H3 122.8 C9—C8—H8 119.3
C2—C3—H3 122.8 C7—C8—H8 119.3
C2'—C1'—S1' 106 (3) C10—C9—C8 117.96 (18)
C2'—C1'—H1' 127.0 C10—C9—H9 121.0
S1'—C1'—H1' 127.0 C8—C9—H9 121.0
C1'—C2'—C3' 120 (4) F1—C10—C9 118.83 (17)
C1'—C2'—H2' 120.0 F1—C10—C11 118.46 (17)
C3'—C2'—H2' 120.0 C9—C10—C11 122.72 (18)
C4—C3'—C2' 108 (2) C10—C11—C12 118.51 (18)
C4—C3'—H3' 125.9 C10—C11—H11 120.7
C2'—C3'—H3' 125.9 C12—C11—H11 120.7
C3'—C4—C5 135.8 (9) C11—C12—C7 120.73 (17)
C3—C4—C5 122.9 (2) C11—C12—H12 119.6
C3'—C4—S1' 112.3 (9) C7—C12—H12 119.6
C5—N1—N2—C6 −174.53 (16) N2—N1—C5—O1 178.84 (15)
C4—S1—C1—C2 −0.7 (8) N2—N1—C5—C4 −1.2 (3)
S1—C1—C2—C3 0.2 (13) C3'—C4—C5—O1 168.9 (14)
C1—C2—C3—C4 0.5 (13) C3—C4—C5—O1 −2.7 (4)
C4—S1'—C1'—C2' −3(7) S1'—C4—C5—O1 −2.1 (4)
S1'—C1'—C2'—C3' 2(9) S1—C4—C5—O1 176.76 (14)
C1'—C2'—C3'—C4 0(7) C3'—C4—C5—N1 −11.1 (14)
C2'—C3'—C4—C3 −1(3) C3—C4—C5—N1 177.3 (3)
C2'—C3'—C4—C5 −174 (2) S1'—C4—C5—N1 177.9 (4)
C2'—C3'—C4—S1' −3(3) S1—C4—C5—N1 −3.2 (3)
C2'—C3'—C4—S1 149 (7) N1—N2—C6—C7 −179.76 (15)
C2—C3—C4—C3' 4.5 (13) N2—C6—C7—C12 6.3 (3)
C2—C3—C4—C5 178.5 (7) N2—C6—C7—C8 −173.20 (17)
C2—C3—C4—S1' 176 (3) C12—C7—C8—C9 −1.6 (3)
C2—C3—C4—S1 −1.0 (8) C6—C7—C8—C9 177.91 (17)
C1'—S1'—C4—C3' 4(4) C7—C8—C9—C10 0.5 (3)
C1'—S1'—C4—C3 −5(5) C8—C9—C10—F1 −179.27 (16)
C1'—S1'—C4—C5 177 (4) C8—C9—C10—C11 0.9 (3)
C1'—S1'—C4—S1 −2(4) F1—C10—C11—C12 179.03 (15)
C1—S1—C4—C3' −30 (5) C9—C10—C11—C12 −1.1 (3)
C1—S1—C4—C3 1.0 (3) C10—C11—C12—C7 0.0 (3)
C1—S1—C4—C5 −178.5 (3) C8—C7—C12—C11 1.3 (3)
C1—S1—C4—S1' 0.3 (5) C6—C7—C12—C11 −178.15 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.90 (2) 1.99 (3) 2.893 (2) 176 (2)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5417).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Jiang, J.-H. (2010a). Acta Cryst. E66, o922. [DOI] [PMC free article] [PubMed]
  4. Jiang, J.-H. (2010b). Acta Cryst. E66, o923. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811056121/xu5417sup1.cif

e-68-0o314-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056121/xu5417Isup2.hkl

e-68-0o314-Isup2.hkl (124.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES