Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):o324–o325. doi: 10.1107/S1600536811056182

(E)-1-(2-Hy­droxy-5-meth­oxy­benzyl­idene)thio­semicarbazide

Amir Adabi Ardakani a,*, Hadi Kargar b, Reza Kia c,d, Muhammad Nawaz Tahir e,*
PMCID: PMC3275013  PMID: 22346958

Abstract

In the title mol­ecule, C9H11N3O2S, an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked via pairs of N—H⋯S inter­actions, forming inversion dimers with R 2 2(8) ring motifs. These dimers are further linked via N—H⋯S and N—H⋯O hydrogen bonds, forming a two-dimensional network lying parallel to (100). The crystal structure is further stabilized by inter­molecular π–π inter­actions [centroid–centroid distance = 3.7972 (9) Å].

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to thio­semicarbazones in coordination chemistry, see: Casas et al. (2000). For their biological applications, see: Maccioni et al. (2003); Ferrari et al. (2000). For related structures, see: Kargar et al. (2010a ,b ); Adabi Ardakani et al. (2012).graphic file with name e-68-0o324-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O2S

  • M r = 225.27

  • Monoclinic, Inline graphic

  • a = 7.4878 (2) Å

  • b = 9.9880 (2) Å

  • c = 14.3754 (3) Å

  • β = 91.846 (1)°

  • V = 1074.55 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 291 K

  • 0.24 × 0.14 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.800, T max = 0.926

  • 10176 measured reflections

  • 2673 independent reflections

  • 2365 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.110

  • S = 1.07

  • 2673 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811056182/su2361sup1.cif

e-68-0o324-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056182/su2361Isup2.hkl

e-68-0o324-Isup2.hkl (131.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811056182/su2361Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.97 2.6844 (15) 146
N2—H2⋯S1i 0.86 2.61 3.3706 (12) 148
N3—H3A⋯S1ii 0.86 2.66 3.2706 (12) 129
N3—H3B⋯O1iii 0.86 2.11 2.9604 (17) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

AAA thanks the Islamic Azad University, Ardakan Branch (this paper was extracted from the research project). HK thanks PNU for financial support. MNT thanks Sargodha University for research facilities.

supplementary crystallographic information

Comment

Thiosemicarbazones constitute an important class of N,S donor ligands due to their propensity to react with a wide range of metals (Casas et al., 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni et al., 2003; Ferrari et al., 2000). We report herein on the synthesis and crystal structure of the title a hydrazone Schiff base compound.

The asymmetric unit of the title compound, Fig. 1, comprises a hydrazone Schiff base ligand. The bond lengths and angles are within the normal ranges and are comparable to those reported for related structures (Kargar et al., 2010a,b; Adabi et al., 2012). An intramolecular O—H···N hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal, pairs of intermolecular N—H···S hydrogen bonds make inversion dimers with an R22(8) ring motif. Intermolecular N—H···S and N—H···O hydrogen bonds link neighbouring molecules into a two-dimensional extended network parallel to (1 0 0). For details of the hydrogen bonding see Table 1, and Fig. 2. The crystal structure is further stabilized by an intermolecular π···π interaction [Cg1···Cg1i = 3.7972 (9)Å; (i) -x+1, -y+1, -z+2; Cg1 is the centroid of ring (C1–C6)].

Experimental

A mixture of 5-methoxysalicylalehyde (0.01 mol) and hydrazinecarbothioamide (0.01 mol) in 20 ml of ethanol was refluxed for about 2 h. On cooling, the solid separated was filtered and recrystallized from ethanol. Colourless plate-like crystals of the title compound, suitable for X-ray diffraction, were obtained by slow evaporation of a solution in ethanol.

Refinement

O- and N-bound H atoms were located in a difference Fourier map and were constrained to ride on their parent atoms: O-H = 0.82 Å, N-H = 0.86 Å, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 and 0.96 Å for CH and CH3 H-atoms, respectively, with Uiso (H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, showing 40% probability displacement ellipsoids and the atomic numbering. The intramolecular O-H···N hydrogen bond is drawn as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a-axis, showing the two-dimensional extended network parallel to (1 0 0). The N—H···S and N—H···O, hydrogen bonds are shown as dashed lines [see Table 1 for details; only the H atoms involved in these interactions are shown].

Crystal data

C9H11N3O2S F(000) = 472
Mr = 225.27 Dx = 1.392 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2750 reflections
a = 7.4878 (2) Å θ = 2.4–27.5°
b = 9.9880 (2) Å µ = 0.29 mm1
c = 14.3754 (3) Å T = 291 K
β = 91.846 (1)° Plate, colourless
V = 1074.55 (4) Å3 0.24 × 0.14 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2673 independent reflections
Radiation source: fine-focus sealed tube 2365 reflections with I > 2σ(I)
graphite Rint = 0.016
φ and ω scans θmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −9→9
Tmin = 0.800, Tmax = 0.926 k = −13→13
10176 measured reflections l = −17→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.2733P] where P = (Fo2 + 2Fc2)/3
2673 reflections (Δ/σ)max = 0.001
138 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.26170 (16) 0.48062 (13) 0.97372 (9) 0.0346 (3)
C2 0.24057 (17) 0.58273 (14) 1.03826 (10) 0.0386 (3)
C3 0.2907 (2) 0.71257 (15) 1.01635 (13) 0.0510 (4)
H3 0.2758 0.7812 1.0591 0.061*
C4 0.3626 (2) 0.73967 (16) 0.93147 (14) 0.0573 (4)
H4 0.3962 0.8268 0.9175 0.069*
C5 0.3857 (2) 0.63922 (17) 0.86653 (12) 0.0512 (4)
C6 0.33436 (19) 0.51057 (16) 0.88716 (10) 0.0438 (3)
H6 0.3478 0.4429 0.8435 0.053*
C7 0.4842 (3) 0.5753 (3) 0.71703 (14) 0.0797 (7)
H7A 0.5574 0.5054 0.7437 0.120*
H7B 0.5415 0.6124 0.6641 0.120*
H7C 0.3701 0.5392 0.6978 0.120*
C8 0.21137 (17) 0.34293 (13) 0.99115 (9) 0.0365 (3)
H8 0.2270 0.2798 0.9445 0.044*
C9 0.02639 (18) 0.11834 (12) 1.14708 (9) 0.0353 (3)
N1 0.14624 (14) 0.30443 (10) 1.06812 (8) 0.0349 (2)
N2 0.10299 (16) 0.17032 (11) 1.07211 (8) 0.0388 (3)
H2 0.1255 0.1192 1.0258 0.047*
N3 0.0098 (2) 0.19397 (12) 1.22149 (8) 0.0507 (3)
H3A 0.0478 0.2752 1.2214 0.061*
H3B −0.0390 0.1620 1.2701 0.061*
O1 0.17090 (17) 0.56061 (11) 1.12351 (8) 0.0514 (3)
H1 0.1484 0.4807 1.1292 0.077*
O2 0.4601 (2) 0.67718 (16) 0.78420 (11) 0.0777 (4)
S1 −0.04238 (6) −0.04281 (3) 1.14369 (3) 0.04739 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0324 (6) 0.0336 (6) 0.0378 (6) −0.0011 (5) 0.0011 (5) 0.0040 (5)
C2 0.0356 (6) 0.0346 (6) 0.0455 (7) 0.0003 (5) 0.0019 (5) 0.0011 (5)
C3 0.0486 (8) 0.0323 (7) 0.0722 (10) −0.0006 (6) 0.0028 (7) −0.0008 (7)
C4 0.0489 (8) 0.0387 (7) 0.0844 (12) −0.0041 (6) 0.0022 (8) 0.0213 (8)
C5 0.0422 (7) 0.0543 (9) 0.0573 (9) −0.0021 (6) 0.0051 (6) 0.0232 (7)
C6 0.0430 (7) 0.0474 (8) 0.0411 (7) −0.0017 (6) 0.0048 (5) 0.0072 (6)
C7 0.0654 (11) 0.123 (2) 0.0515 (10) 0.0004 (12) 0.0163 (9) 0.0260 (12)
C8 0.0411 (6) 0.0329 (6) 0.0356 (6) −0.0024 (5) 0.0041 (5) −0.0009 (5)
C9 0.0440 (6) 0.0293 (6) 0.0326 (6) 0.0004 (5) 0.0021 (5) 0.0016 (5)
N1 0.0401 (5) 0.0285 (5) 0.0362 (5) −0.0025 (4) 0.0027 (4) 0.0010 (4)
N2 0.0540 (6) 0.0282 (5) 0.0346 (5) −0.0040 (4) 0.0091 (5) −0.0012 (4)
N3 0.0834 (9) 0.0347 (6) 0.0347 (6) −0.0109 (6) 0.0138 (6) −0.0034 (5)
O1 0.0678 (7) 0.0401 (5) 0.0473 (6) −0.0046 (5) 0.0163 (5) −0.0072 (4)
O2 0.0770 (9) 0.0822 (10) 0.0750 (9) −0.0103 (7) 0.0193 (7) 0.0389 (8)
S1 0.0754 (3) 0.02908 (19) 0.0382 (2) −0.00904 (14) 0.01049 (17) 0.00096 (12)

Geometric parameters (Å, °)

C1—C2 1.3912 (19) C7—H7A 0.9600
C1—C6 1.4063 (18) C7—H7B 0.9600
C1—C8 1.4499 (17) C7—H7C 0.9600
C2—O1 1.3653 (17) C8—N1 1.2824 (16)
C2—C3 1.389 (2) C8—H8 0.9300
C3—C4 1.376 (2) C9—N3 1.3187 (17)
C3—H3 0.9300 C9—N2 1.3415 (16)
C4—C5 1.385 (3) C9—S1 1.6901 (13)
C4—H4 0.9300 N1—N2 1.3797 (14)
C5—C6 1.376 (2) N2—H2 0.8600
C5—O2 1.3774 (19) N3—H3A 0.8600
C6—H6 0.9300 N3—H3B 0.8600
C7—O2 1.418 (3) O1—H1 0.8200
C2—C1—C6 119.32 (13) H7A—C7—H7B 109.5
C2—C1—C8 122.98 (12) O2—C7—H7C 109.5
C6—C1—C8 117.70 (12) H7A—C7—H7C 109.5
O1—C2—C3 117.94 (13) H7B—C7—H7C 109.5
O1—C2—C1 122.33 (12) N1—C8—C1 122.80 (12)
C3—C2—C1 119.72 (13) N1—C8—H8 118.6
C4—C3—C2 120.06 (15) C1—C8—H8 118.6
C4—C3—H3 120.0 N3—C9—N2 118.93 (12)
C2—C3—H3 120.0 N3—C9—S1 122.17 (10)
C3—C4—C5 121.07 (14) N2—C9—S1 118.89 (10)
C3—C4—H4 119.5 C8—N1—N2 115.04 (11)
C5—C4—H4 119.5 C9—N2—N1 121.08 (11)
C6—C5—O2 124.45 (17) C9—N2—H2 119.5
C6—C5—C4 119.29 (14) N1—N2—H2 119.5
O2—C5—C4 116.26 (15) C9—N3—H3A 120.0
C5—C6—C1 120.53 (15) C9—N3—H3B 120.0
C5—C6—H6 119.7 H3A—N3—H3B 120.0
C1—C6—H6 119.7 C2—O1—H1 109.5
O2—C7—H7A 109.5 C5—O2—C7 116.83 (15)
O2—C7—H7B 109.5
C6—C1—C2—O1 179.97 (12) C2—C1—C6—C5 0.6 (2)
C8—C1—C2—O1 0.2 (2) C8—C1—C6—C5 −179.64 (13)
C6—C1—C2—C3 0.2 (2) C2—C1—C8—N1 −1.2 (2)
C8—C1—C2—C3 −179.54 (13) C6—C1—C8—N1 179.03 (12)
O1—C2—C3—C4 179.62 (14) C1—C8—N1—N2 178.93 (11)
C1—C2—C3—C4 −0.6 (2) N3—C9—N2—N1 −7.2 (2)
C2—C3—C4—C5 0.2 (2) S1—C9—N2—N1 173.92 (10)
C3—C4—C5—C6 0.6 (2) C8—N1—N2—C9 −177.01 (12)
C3—C4—C5—O2 −179.49 (14) C6—C5—O2—C7 0.0 (2)
O2—C5—C6—C1 179.10 (14) C4—C5—O2—C7 −179.90 (16)
C4—C5—C6—C1 −1.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.97 2.6844 (15) 146
N2—H2···S1i 0.86 2.61 3.3706 (12) 148
N3—H3A···S1ii 0.86 2.66 3.2706 (12) 129
N3—H3B···O1iii 0.86 2.11 2.9604 (17) 172

Symmetry codes: (i) −x, −y, −z+2; (ii) −x, y+1/2, −z+5/2; (iii) −x, y−1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2361).

References

  1. Adabi Ardakani, A., Kargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o340–o341. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.
  5. Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89–97. [DOI] [PubMed]
  6. Kargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o2999. [DOI] [PMC free article] [PubMed]
  7. Kargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010b). Acta Cryst. E66, o2981. [DOI] [PMC free article] [PubMed]
  8. Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco 58, 951–959. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811056182/su2361sup1.cif

e-68-0o324-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056182/su2361Isup2.hkl

e-68-0o324-Isup2.hkl (131.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811056182/su2361Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES