Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):o335. doi: 10.1107/S1600536811055589

N′-(2-Chloro­benzyl­idene)-4-nitro­benzohydrazide

Chun-Bao Tang a,*
PMCID: PMC3275020  PMID: 22346965

Abstract

In the title compound, C14H10ClN3O3, the dihedral angle between the benzene rings is 6.64 (13)°. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds, forming chains running along the c axis direction.

Related literature

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010, 2011). For reference bond-length data, see: Allen et al. (1987).graphic file with name e-68-0o335-scheme1.jpg

Experimental

Crystal data

  • C14H10ClN3O3

  • M r = 303.70

  • Monoclinic, Inline graphic

  • a = 11.2332 (18) Å

  • b = 13.3778 (18) Å

  • c = 8.9770 (16) Å

  • β = 90.408 (2)°

  • V = 1349.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.949, T max = 0.957

  • 10640 measured reflections

  • 2931 independent reflections

  • 1882 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.146

  • S = 1.03

  • 2931 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811055589/su2353sup1.cif

e-68-0o335-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055589/su2353Isup2.hkl

e-68-0o335-Isup2.hkl (143.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811055589/su2353Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.89 (1) 2.06 (1) 2.915 (3) 160 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Jiaying University research fund is gratefully acknowledged.

supplementary crystallographic information

Comment

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). As a continuation of our work on the structural study on such compounds (Tang, 2010, 2011), we reports herein on the crystal structure of the title new hydrazone compound.

In the molecule of the title compound (Fig. 1), the dihedral angle between the two benzene rings is 6.64 (13)°. Bond lengths in the compound are normal (Allen et al., 1987) and comparable to those in the similar compounds (Tang, 2010; Tang, 2011).

In the crystal, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains running along the c axis direction (Fig. 2).

Experimental

2-Chlorobenzaldehyde (0.1 mmol, 14.1 mg) and 4-nitrobenzohydrazide (0.1 mmol, 18.2 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear yellow solution. Yellow needle-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement

The amino H atom was located in a difference Fourier map and refined isotropically, with an N—H distance restraint of 0.90 (1) Å. C-bound H atoms were included in calculated positions and refined as riding atoms: C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, viewed along the b axis, with hydrogen bonds shown as dashed lines.

Crystal data

C14H10ClN3O3 F(000) = 624
Mr = 303.70 Dx = 1.495 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.2332 (18) Å Cell parameters from 2464 reflections
b = 13.3778 (18) Å θ = 2.4–24.5°
c = 8.9770 (16) Å µ = 0.30 mm1
β = 90.408 (2)° T = 298 K
V = 1349.0 (4) Å3 Cut from needle, yellow
Z = 4 0.18 × 0.17 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2931 independent reflections
Radiation source: fine-focus sealed tube 1882 reflections with I > 2σ(I)
graphite Rint = 0.045
ω scans θmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.949, Tmax = 0.957 k = −14→17
10640 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.5874P] where P = (Fo2 + 2Fc2)/3
2931 reflections (Δ/σ)max < 0.001
193 parameters Δρmax = 0.36 e Å3
1 restraint Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.23505 (8) 0.62569 (6) 1.10065 (9) 0.0782 (3)
H2 0.246 (3) 0.265 (2) 1.1045 (13) 0.080*
N1 0.18950 (18) 0.33163 (14) 0.9198 (2) 0.0444 (5)
N2 0.23517 (19) 0.25548 (14) 1.0072 (2) 0.0446 (5)
N3 0.4488 (2) −0.1478 (2) 1.3026 (3) 0.0667 (7)
O1 0.26845 (19) 0.15983 (13) 0.80373 (18) 0.0620 (5)
O2 0.4173 (3) −0.23176 (19) 1.2688 (3) 0.1126 (10)
O3 0.5111 (2) −0.12928 (18) 1.4092 (3) 0.0902 (8)
C1 0.1488 (2) 0.59971 (19) 0.9450 (3) 0.0513 (6)
C2 0.1308 (2) 0.50090 (18) 0.8991 (3) 0.0452 (6)
C3 0.0625 (2) 0.4872 (2) 0.7698 (3) 0.0553 (7)
H3 0.0493 0.4227 0.7348 0.066*
C4 0.0149 (3) 0.5657 (3) 0.6941 (3) 0.0679 (8)
H4 −0.0312 0.5541 0.6094 0.082*
C5 0.0344 (3) 0.6622 (2) 0.7416 (4) 0.0709 (9)
H5 0.0020 0.7154 0.6885 0.085*
C6 0.1015 (3) 0.6800 (2) 0.8673 (4) 0.0644 (8)
H6 0.1149 0.7450 0.8998 0.077*
C7 0.1807 (2) 0.41629 (18) 0.9816 (3) 0.0463 (6)
H7 0.2061 0.4247 1.0796 0.056*
C8 0.2731 (2) 0.17126 (17) 0.9389 (3) 0.0434 (6)
C9 0.3213 (2) 0.09038 (17) 1.0373 (2) 0.0392 (5)
C10 0.3769 (2) 0.10957 (18) 1.1718 (3) 0.0443 (6)
H10 0.3845 0.1751 1.2052 0.053*
C11 0.4216 (2) 0.03155 (19) 1.2576 (3) 0.0495 (6)
H11 0.4605 0.0441 1.3474 0.059*
C12 0.4069 (2) −0.06443 (19) 1.2070 (3) 0.0479 (6)
C13 0.3536 (2) −0.08568 (19) 1.0728 (3) 0.0558 (7)
H13 0.3456 −0.1514 1.0404 0.067*
C14 0.3122 (2) −0.00768 (19) 0.9871 (3) 0.0539 (7)
H14 0.2777 −0.0207 0.8947 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1009 (6) 0.0532 (5) 0.0802 (6) −0.0085 (4) −0.0221 (5) −0.0047 (4)
N1 0.0560 (12) 0.0374 (11) 0.0397 (11) −0.0027 (9) −0.0030 (9) 0.0046 (9)
N2 0.0662 (13) 0.0345 (11) 0.0329 (11) −0.0010 (9) −0.0045 (9) −0.0007 (9)
N3 0.0637 (15) 0.0569 (16) 0.0792 (18) 0.0213 (12) −0.0113 (13) 0.0006 (14)
O1 0.1089 (16) 0.0463 (10) 0.0308 (10) −0.0018 (10) −0.0020 (9) −0.0018 (8)
O2 0.134 (2) 0.0514 (15) 0.152 (3) 0.0189 (14) −0.0636 (19) 0.0076 (15)
O3 0.1053 (18) 0.0902 (18) 0.0747 (16) 0.0349 (14) −0.0268 (14) −0.0009 (13)
C1 0.0545 (14) 0.0475 (15) 0.0518 (15) −0.0003 (12) 0.0045 (12) 0.0070 (12)
C2 0.0504 (13) 0.0428 (14) 0.0425 (14) 0.0001 (11) 0.0078 (11) 0.0052 (11)
C3 0.0590 (16) 0.0573 (17) 0.0496 (16) 0.0051 (13) −0.0006 (12) −0.0021 (13)
C4 0.0709 (19) 0.078 (2) 0.0548 (17) 0.0151 (16) −0.0082 (14) 0.0057 (16)
C5 0.081 (2) 0.063 (2) 0.068 (2) 0.0191 (16) 0.0024 (17) 0.0202 (16)
C6 0.0742 (19) 0.0443 (16) 0.075 (2) 0.0044 (14) 0.0094 (16) 0.0094 (14)
C7 0.0579 (14) 0.0440 (14) 0.0369 (13) −0.0017 (11) −0.0019 (11) 0.0026 (11)
C8 0.0579 (14) 0.0369 (13) 0.0353 (13) −0.0113 (11) −0.0005 (10) 0.0003 (10)
C9 0.0476 (12) 0.0365 (12) 0.0337 (12) −0.0051 (10) 0.0043 (10) −0.0016 (10)
C10 0.0510 (13) 0.0369 (13) 0.0450 (14) −0.0038 (10) −0.0014 (11) −0.0087 (11)
C11 0.0507 (14) 0.0530 (16) 0.0446 (14) 0.0034 (12) −0.0080 (11) −0.0057 (12)
C12 0.0468 (13) 0.0443 (14) 0.0526 (15) 0.0089 (11) 0.0004 (11) 0.0007 (12)
C13 0.0694 (17) 0.0355 (13) 0.0625 (18) 0.0044 (12) −0.0095 (14) −0.0119 (12)
C14 0.0749 (18) 0.0416 (14) 0.0450 (14) −0.0001 (13) −0.0130 (13) −0.0117 (12)

Geometric parameters (Å, °)

Cl1—C1 1.729 (3) C4—H4 0.9300
N1—C7 1.265 (3) C5—C6 1.373 (4)
N1—N2 1.382 (3) C5—H5 0.9300
N2—C8 1.353 (3) C6—H6 0.9300
N2—H2 0.891 (10) C7—H7 0.9300
N3—O3 1.207 (3) C8—C9 1.495 (3)
N3—O2 1.216 (3) C9—C10 1.380 (3)
N3—C12 1.482 (3) C9—C14 1.390 (3)
O1—C8 1.224 (3) C10—C11 1.389 (3)
C1—C6 1.385 (4) C10—H10 0.9300
C1—C2 1.399 (3) C11—C12 1.372 (3)
C2—C3 1.399 (3) C11—H11 0.9300
C2—C7 1.462 (3) C12—C13 1.371 (3)
C3—C4 1.358 (4) C13—C14 1.375 (4)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.377 (5) C14—H14 0.9300
C7—N1—N2 116.14 (19) N1—C7—C2 120.1 (2)
C8—N2—N1 118.26 (19) N1—C7—H7 119.9
C8—N2—H2 122 (2) C2—C7—H7 119.9
N1—N2—H2 120 (2) O1—C8—N2 122.8 (2)
O3—N3—O2 123.6 (3) O1—C8—C9 120.5 (2)
O3—N3—C12 119.0 (3) N2—C8—C9 116.7 (2)
O2—N3—C12 117.4 (3) C10—C9—C14 119.4 (2)
C6—C1—C2 122.0 (3) C10—C9—C8 122.8 (2)
C6—C1—Cl1 117.5 (2) C14—C9—C8 117.8 (2)
C2—C1—Cl1 120.5 (2) C9—C10—C11 120.3 (2)
C1—C2—C3 116.5 (2) C9—C10—H10 119.8
C1—C2—C7 121.9 (2) C11—C10—H10 119.8
C3—C2—C7 121.6 (2) C12—C11—C10 118.5 (2)
C4—C3—C2 121.7 (3) C12—C11—H11 120.7
C4—C3—H3 119.2 C10—C11—H11 120.7
C2—C3—H3 119.2 C13—C12—C11 122.4 (2)
C3—C4—C5 120.6 (3) C13—C12—N3 119.2 (2)
C3—C4—H4 119.7 C11—C12—N3 118.4 (2)
C5—C4—H4 119.7 C12—C13—C14 118.5 (2)
C6—C5—C4 120.1 (3) C12—C13—H13 120.7
C6—C5—H5 119.9 C14—C13—H13 120.7
C4—C5—H5 119.9 C13—C14—C9 120.7 (2)
C5—C6—C1 119.1 (3) C13—C14—H14 119.6
C5—C6—H6 120.4 C9—C14—H14 119.6
C1—C6—H6 120.4

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.89 (1) 2.06 (1) 2.915 (3) 160 (3)

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2353).

References

  1. Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062. [DOI] [PubMed]
  4. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962. [DOI] [PMC free article] [PubMed]
  6. Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.
  7. Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313. [DOI] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172. [DOI] [PMC free article] [PubMed]
  11. Tang, C.-B. (2010). Acta Cryst. E66, o2482. [DOI] [PMC free article] [PubMed]
  12. Tang, C.-B. (2011). Acta Cryst. E67, o271. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811055589/su2353sup1.cif

e-68-0o335-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055589/su2353Isup2.hkl

e-68-0o335-Isup2.hkl (143.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811055589/su2353Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES