Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):o355. doi: 10.1107/S1600536811055632

(2E,6E)-2,6-Bis(4-methyl­benzyl­idene)cyclo­hex-3-en-1-one

M Saeed Abaee a,*, Werner Massa b,*, Mohammad M Mojtahedi a, A Wahid Mesbah a
PMCID: PMC3275037  PMID: 22346982

Abstract

The title compound, C22H20O, shows an approximately planar cyclo­hexenone ring [maximum deviation = 0.069 (4) Å], with a disordered position of the C=C bond [ratio = 0.71 (2)/0.29 (2)]. The benzene rings of the 4-methyl­benzyl­idene units, attached in the 2- and 6-positions to the cyclo­hexenone ring, are rotated in the same direction by 28.6 (4) and 22.4 (4)°, with respect to the mean plane of the cyclo­hexenone ring [fraction 0.71 (2); maximum deviation = 0.06 (3) Å]. In the crystal, mol­ecules are packed in the manner of a distorted hexa­gonal rod packing with their long axes all aligned along [201]. A number of C—H⋯π inter­actions stablize the crystal structure.

Related literature

For background information to aldol condensation reactions in hetero- and homocyclic ketones, see: Abaee et al. (2007). For the crystal structure of the analogous compound with 4-meth­oxy­benzyl­idene substituents in the 2- and 6- positions on the cyclo­hexenone ring, see: Abaee et al. (2007). For other similar substituted cyclo­hexenone structures, see: Shi et al. (2008); Guo et al. (2008).graphic file with name e-68-0o355-scheme1.jpg

Experimental

Crystal data

  • C22H20O

  • M r = 300.38

  • Monoclinic, Inline graphic

  • a = 10.7108 (14) Å

  • b = 7.2772 (7) Å

  • c = 11.4690 (14) Å

  • β = 114.366 (14)°

  • V = 814.32 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 193 K

  • 0.50 × 0.24 × 0.15 mm

Data collection

  • Stoe IPDS image plate diffractometer

  • 6110 measured reflections

  • 1709 independent reflections

  • 1219 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.071

  • S = 0.98

  • 1709 reflections

  • 212 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: EXPOSE (Stoe & Cie, 1999); cell refinement: CELL (Stoe & Cie, 1999); data reduction: INTEGRATE (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811055632/su2352sup1.cif

e-68-0o355-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055632/su2352Isup2.hkl

e-68-0o355-Isup2.hkl (82.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811055632/su2352Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C8–C11,C12a,C13, C1–C6 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg2i 0.95 2.78 3.538 (3) 137
C6—H6⋯Cg3ii 0.95 2.64 3.423 (3) 139
C16—H16⋯Cg3iii 0.95 2.85 3.496 (3) 126
C13—H13b⋯Cg1ii 0.99 2.89 3.642 (6) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors would like to thank the Ministry of Science, Research and Technology of Iran for partial financial support of this work.

supplementary crystallographic information

Comment

In continuation of our studies on aldol condensation reactions in hetero- and homocyclic ketones (Abaee et al., 2007), we herein report on the synthesis and crystal structure of the title compound.

It crystallizes in the acentric space group P21 but the molecule shows pseudosymmetry m (Cs), with the mirror plane perpendicular to the main molecular plane. The Cs symmetry is broken by the central symmetry-less cyclohexenone ring, but a second orientation of the molecule generated by this mirror plane appears as an alternative disordered orientation in a ratio of 0.71 (2)/0.29 (2) (Fig. 1). A split atom model was refined [C12a/C12b: occupancies 0.71 (2)/(0.29 (2)] using restraints providing the same bond lengths for corresponding atom pairs, C11—C12a/C13—C12b and C11—C12b/C13—C12a, of 1.475 (5)/1.319 (5)Å. The strong anisotropy of the displacement parameters of the O atom may be associated to this disorder. In addition, one of the terminal methyl groups, C21, showed 1:1 disorder over two orientations [occupancy of 0.5 for each of the six H-atom postions].

A second pseudosymmetric mirror plane can be found in the main plane of the molecule, the realisation of which would lead to the centrosymmetric space group P21/m. The clear inclination of both benzene rings [II (C1-C6) and III (C15-C20)] by 28.6 (4) and 22.4 (4)°, respectively, to the cyclohexenone ring I (O1,C8-C11,C12a,C13) rules out this possibility. Benzene rings II and III are inclined to one another by 8.66 (13)°.

In the presence of only one O atom besides 22 C and 20 H atoms, the absolute structure could not be determined, and from the synthesis the formation of a racemate is expected. In an analogous compound, with 4-methoxybenzylidene substituents in the 2- and 6- positions on the cyclohexenone ring (Abaee et al., 2007), the benzene rings are rotated in opposite directions with respect to the central ring plane, while in the title compound the rotation is in the same direction (Fig. 1). In general the bond distances and angles are similar to those observed in analogues structures (Abaee et al., 2007; Shi et al., 2008; Guo et al., 2008).

In the crystal, molecules pack in the manner of a distorted hexagonal rod packing with their long axes all aligned along the [201] direction (Figs. 2 and 3). The intermolecular contacts are reinforced by C–H···π interactions (Table 1).

Experimental

A mixture of cyclohex-2-enone (193 µL, 2 mmol), 4-methylbenzaldehyde (471 µL, 4 mmol), triethylamine (1122 µL, 8 mmol), and ZnBr2 (900 mg, 4 mmol) in 5 ml dry CH2Cl2 was stirred at room temperature under argon atmosphere for 10 h. The progress of the reaction was checked by TLC using a 1:8 mixture of EtOAc/hexane. At the end of the reaction, the mixture was diluted with CH2Cl2 and washed with brine. The organic layer was dried using Na2SO4 and concentrated under reduced pressure. The product obtained was isolated (540 mg, 90%) by column chromatography over silicagel using a 1:8 mixture of EtOAc/hexane. The solid product was recrystallized from EtOAc to give light-orange block-like crystals of the title compound.

Refinement

For the disordered region of the central cyclohexenone ring, a split atom model was refined [C12a/C12b: occupancies 0.71 (2)/0.29 (2)] using restraints providing the same bond lengths for corresponding atom pairs: C11—C12a/C13—C12b = 1.475 (5)Å and C13—C12a/C11—C12b 1.319 (5) Å. The anisotropic displacement parameters of the split atoms, C12a and C12b, were set to be equal. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 1386 Friedel pairs were merged and Δf " set to zero. All the H atoms could be located in a difference Fourier map. In the final cycles of refinement they were included in calculated positions and treated as riding atoms: C-H = 0.95 and 0.99 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labels and 50% probability displacement ellipsoids. The less occupied (by 29%) disordered orientation of a part of the central ring is drawn in transparent red.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the b axis, showing the parallel orientation of the molecules along the [201] direction; O-atoms red, H-atoms omitted.

Fig. 3.

Fig. 3.

Arrangement of molecules according to a distorted hexagonal rod packing in projection along direction [201]; O-atoms red, H-atoms omitted.

Crystal data

C22H20O F(000) = 320
Mr = 300.38 Dx = 1.225 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 5168 reflections
a = 10.7108 (14) Å θ = 2.0–25.8°
b = 7.2772 (7) Å µ = 0.07 mm1
c = 11.4690 (14) Å T = 193 K
β = 114.366 (14)° Block, light-orange
V = 814.32 (17) Å3 0.50 × 0.24 × 0.15 mm
Z = 2

Data collection

Stoe IPDS image plate diffractometer 1219 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.060
graphite θmax = 26.0°, θmin = 2.0°
Detector resolution: 6.7 pixels mm-1 h = −13→13
φ–scans k = −8→8
6110 measured reflections l = −13→14
1709 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: difference Fourier map
wR(F2) = 0.071 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.030P)2] where P = (Fo2 + 2Fc2)/3
1709 reflections (Δ/σ)max < 0.001
212 parameters Δρmax = 0.17 e Å3
3 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 1.00222 (16) 0.8042 (5) 0.28700 (15) 0.0927 (11)
C1 0.3618 (2) 0.8455 (4) −0.22735 (19) 0.0337 (6)
C2 0.3948 (2) 0.7517 (4) −0.1120 (2) 0.0359 (6)
H2 0.3241 0.6931 −0.0961 0.043*
C3 0.5283 (2) 0.7427 (4) −0.0206 (2) 0.0336 (6)
H3 0.5473 0.6804 0.0577 0.040*
C4 0.6368 (2) 0.8242 (4) −0.04127 (19) 0.0310 (5)
C5 0.6034 (2) 0.9148 (4) −0.1573 (2) 0.0338 (6)
H5 0.6739 0.9705 −0.1749 0.041*
C6 0.4685 (2) 0.9248 (4) −0.2476 (2) 0.0343 (6)
H6 0.4489 0.9882 −0.3257 0.041*
C7 0.7743 (2) 0.8148 (4) 0.0625 (2) 0.0344 (6)
H7 0.7756 0.7966 0.1449 0.041*
C8 0.8999 (2) 0.8275 (5) 0.0616 (2) 0.0354 (6)
C9 1.0200 (2) 0.8195 (5) 0.1884 (2) 0.0460 (7)
C10 1.1616 (2) 0.8318 (5) 0.19458 (18) 0.0323 (5)
C11 1.1787 (2) 0.8531 (5) 0.07247 (19) 0.0428 (7)
H11A 1.2201 0.9750 0.0734 0.051* 0.71 (2)
H11B 1.2450 0.7592 0.0710 0.051* 0.71 (2)
H11C 1.2680 0.8662 0.0748 0.051* 0.29 (2)
C12A 1.0537 (11) 0.837 (4) −0.0473 (6) 0.041 (2) 0.71 (2)
H12A 1.0648 0.8253 −0.1250 0.049* 0.71 (2)
C12B 1.0710 (15) 0.854 (12) −0.0385 (8) 0.041 (2) 0.29 (2)
H12B 1.0869 0.8655 −0.1137 0.049* 0.29 (2)
C13 0.9276 (2) 0.8378 (5) −0.0544 (2) 0.0445 (6)
H13A 0.8788 0.7335 −0.1099 0.053* 0.29 (2)
H13B 0.8832 0.9514 −0.1004 0.053* 0.29 (2)
H13C 0.8546 0.8343 −0.1373 0.053* 0.71 (2)
C14 1.2658 (2) 0.8164 (4) 0.3111 (2) 0.0351 (6)
H14 1.2366 0.7976 0.3779 0.042*
C15 1.4143 (2) 0.8230 (4) 0.35534 (19) 0.0312 (5)
C16 1.4931 (2) 0.7558 (4) 0.4790 (2) 0.0342 (6)
H16 1.4478 0.7056 0.5276 0.041*
C17 1.6344 (2) 0.7606 (4) 0.5319 (2) 0.0382 (6)
H17 1.6839 0.7136 0.6157 0.046*
C18 1.7060 (2) 0.8332 (5) 0.4649 (2) 0.0372 (6)
C19 1.6289 (2) 0.8998 (4) 0.3425 (2) 0.0371 (7)
H19 1.6750 0.9490 0.2944 0.045*
C20 1.4862 (2) 0.8969 (3) 0.2881 (2) 0.0350 (6)
H20 1.4371 0.9455 0.2046 0.042*
C21 0.2162 (2) 0.8587 (5) −0.3252 (2) 0.0496 (8)
H21A 0.1559 0.7939 −0.2938 0.074* 0.50
H21B 0.2086 0.8025 −0.4056 0.074* 0.50
H21C 0.1890 0.9881 −0.3401 0.074* 0.50
H21D 0.2131 0.9291 −0.3992 0.074* 0.50
H21E 0.1604 0.9205 −0.2875 0.074* 0.50
H21F 0.1800 0.7349 −0.3529 0.074* 0.50
C22 1.8600 (2) 0.8394 (6) 0.5234 (2) 0.0556 (8)
H22A 1.8959 0.7480 0.5920 0.083*
H22B 1.8909 0.9621 0.5587 0.083*
H22C 1.8935 0.8122 0.4577 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0368 (9) 0.212 (3) 0.0306 (9) 0.0030 (17) 0.0155 (7) 0.0097 (17)
C1 0.0350 (13) 0.0347 (16) 0.0299 (12) 0.0045 (14) 0.0118 (10) −0.0026 (14)
C2 0.0321 (13) 0.0397 (16) 0.0388 (14) −0.0034 (12) 0.0176 (11) −0.0027 (13)
C3 0.0386 (14) 0.0361 (16) 0.0296 (12) 0.0024 (13) 0.0176 (11) 0.0020 (12)
C4 0.0349 (12) 0.0289 (13) 0.0312 (11) 0.0045 (14) 0.0155 (9) −0.0022 (15)
C5 0.0343 (13) 0.0342 (15) 0.0364 (13) −0.0003 (12) 0.0182 (11) −0.0004 (13)
C6 0.0394 (14) 0.0341 (15) 0.0301 (12) 0.0047 (12) 0.0149 (11) 0.0026 (11)
C7 0.0324 (12) 0.0400 (17) 0.0286 (11) −0.0001 (13) 0.0105 (9) −0.0028 (14)
C8 0.0299 (12) 0.0428 (14) 0.0316 (12) 0.0007 (15) 0.0107 (10) 0.0016 (15)
C9 0.0378 (13) 0.070 (2) 0.0324 (12) 0.0009 (16) 0.0169 (11) −0.0034 (17)
C10 0.0311 (12) 0.0370 (14) 0.0277 (11) 0.0028 (15) 0.0110 (10) −0.0013 (14)
C11 0.0362 (12) 0.062 (2) 0.0325 (12) 0.0033 (15) 0.0169 (10) 0.0044 (15)
C12A 0.041 (2) 0.054 (7) 0.0294 (12) −0.002 (5) 0.0169 (14) 0.001 (3)
C12B 0.041 (2) 0.054 (7) 0.0294 (12) −0.002 (5) 0.0169 (14) 0.001 (3)
C13 0.0358 (13) 0.0627 (18) 0.0334 (12) 0.0018 (16) 0.0126 (10) −0.0047 (16)
C14 0.0315 (12) 0.0443 (17) 0.0306 (11) −0.0003 (15) 0.0140 (10) −0.0024 (15)
C15 0.0354 (12) 0.0321 (14) 0.0252 (11) −0.0002 (14) 0.0117 (10) −0.0059 (14)
C16 0.0386 (13) 0.0352 (16) 0.0319 (12) −0.0023 (12) 0.0175 (11) −0.0009 (12)
C17 0.0364 (14) 0.0416 (16) 0.0284 (12) 0.0007 (12) 0.0051 (11) 0.0001 (12)
C18 0.0318 (12) 0.0410 (15) 0.0361 (12) 0.0005 (15) 0.0112 (10) −0.0045 (16)
C19 0.0361 (15) 0.0401 (17) 0.0393 (14) −0.0032 (12) 0.0197 (12) −0.0015 (13)
C20 0.0376 (14) 0.0359 (17) 0.0301 (12) 0.0001 (13) 0.0127 (11) 0.0018 (12)
C21 0.0363 (13) 0.066 (2) 0.0384 (13) 0.0014 (15) 0.0075 (11) 0.0007 (16)
C22 0.0354 (14) 0.072 (2) 0.0537 (16) −0.003 (2) 0.0123 (12) −0.004 (2)

Geometric parameters (Å, °)

O1—C9 1.227 (3) C12B—C13 1.475 (11)
C1—C6 1.383 (3) C12B—H12B 0.9500
C1—C2 1.398 (3) C13—H13A 0.9900
C1—C21 1.503 (3) C13—H13B 0.9900
C2—C3 1.382 (3) C13—H13C 0.9500
C2—H2 0.9500 C14—C15 1.458 (3)
C3—C4 1.409 (3) C14—H14 0.9500
C3—H3 0.9500 C15—C20 1.403 (3)
C4—C5 1.393 (3) C15—C16 1.406 (3)
C4—C7 1.465 (3) C16—C17 1.379 (3)
C5—C6 1.390 (3) C16—H16 0.9500
C5—H5 0.9500 C17—C18 1.395 (3)
C6—H6 0.9500 C17—H17 0.9500
C7—C8 1.352 (3) C18—C19 1.390 (3)
C7—H7 0.9500 C18—C22 1.503 (3)
C8—C13 1.479 (3) C19—C20 1.392 (3)
C8—C9 1.493 (3) C19—H19 0.9500
C9—C10 1.491 (3) C20—H20 0.9500
C10—C14 1.346 (3) C21—H21A 0.9800
C10—C11 1.494 (3) C21—H21B 0.9800
C11—C12B 1.319 (12) C21—H21C 0.9800
C11—C12A 1.475 (9) C21—H21D 0.9800
C11—H11A 0.9900 C21—H21E 0.9800
C11—H11B 0.9900 C21—H21F 0.9800
C11—H11C 0.9500 C22—H22A 0.9800
C12A—C13 1.319 (10) C22—H22B 0.9800
C12A—H12A 0.9500 C22—H22C 0.9800
C6—C1—C2 117.35 (19) C12A—C13—H13B 106.9
C6—C1—C21 121.5 (2) C12B—C13—H13B 104.3
C2—C1—C21 121.1 (2) C8—C13—H13B 106.9
C3—C2—C1 121.3 (2) H13A—C13—H13B 106.7
C3—C2—H2 119.4 C12A—C13—H13C 117.4
C1—C2—H2 119.4 C12B—C13—H13C 120.7
C2—C3—C4 121.3 (2) C8—C13—H13C 120.7
C2—C3—H3 119.4 H13A—C13—H13C 48.5
C4—C3—H3 119.4 H13B—C13—H13C 58.2
C5—C4—C3 117.09 (19) C10—C14—C15 133.0 (2)
C5—C4—C7 125.0 (2) C10—C14—H14 113.5
C3—C4—C7 117.8 (2) C15—C14—H14 113.5
C6—C5—C4 121.0 (2) C20—C15—C16 116.78 (19)
C6—C5—H5 119.5 C20—C15—C14 126.1 (2)
C4—C5—H5 119.5 C16—C15—C14 117.1 (2)
C1—C6—C5 122.0 (2) C17—C16—C15 121.9 (2)
C1—C6—H6 119.0 C17—C16—H16 119.1
C5—C6—H6 119.0 C15—C16—H16 119.1
C8—C7—C4 131.4 (2) C16—C17—C18 121.4 (2)
C8—C7—H7 114.3 C16—C17—H17 119.3
C4—C7—H7 114.3 C18—C17—H17 119.3
C7—C8—C13 125.34 (19) C19—C18—C17 117.1 (2)
C7—C8—C9 116.8 (2) C19—C18—C22 121.8 (2)
C13—C8—C9 117.79 (19) C17—C18—C22 121.1 (2)
O1—C9—C10 120.20 (19) C18—C19—C20 122.2 (2)
O1—C9—C8 120.1 (2) C18—C19—H19 118.9
C10—C9—C8 119.67 (19) C20—C19—H19 118.9
C14—C10—C9 116.93 (19) C19—C20—C15 120.6 (2)
C14—C10—C11 124.51 (19) C19—C20—H20 119.7
C9—C10—C11 118.53 (18) C15—C20—H20 119.7
C12B—C11—C12A 6(4) C1—C21—H21A 109.5
C12B—C11—C10 120.5 (4) C1—C21—H21B 109.5
C12A—C11—C10 116.7 (3) H21A—C21—H21B 109.5
C12B—C11—H11A 102.5 C1—C21—H21C 109.5
C12A—C11—H11A 108.1 H21A—C21—H21C 109.5
C10—C11—H11A 108.1 H21B—C21—H21C 109.5
C12B—C11—H11B 109.5 C1—C21—H21D 109.5
C12A—C11—H11B 108.1 H21A—C21—H21D 141.1
C10—C11—H11B 108.1 H21B—C21—H21D 56.3
H11A—C11—H11B 107.3 H21C—C21—H21D 56.3
C12B—C11—H11C 119.7 C1—C21—H21E 109.5
C12A—C11—H11C 123.4 H21A—C21—H21E 56.3
C10—C11—H11C 119.7 H21B—C21—H21E 141.1
H11A—C11—H11C 57.9 H21C—C21—H21E 56.3
H11B—C11—H11C 49.5 H21D—C21—H21E 109.5
C13—C12A—C11 124.8 (4) C1—C21—H21F 109.5
C13—C12A—H12A 117.6 H21A—C21—H21F 56.3
C11—C12A—H12A 117.6 H21B—C21—H21F 56.3
C11—C12B—C13 124.8 (6) H21C—C21—H21F 141.1
C11—C12B—H12B 117.6 H21D—C21—H21F 109.5
C13—C12B—H12B 117.6 H21E—C21—H21F 109.5
C12A—C13—C12B 6(4) C18—C22—H22A 109.5
C12A—C13—C8 121.6 (3) C18—C22—H22B 109.5
C12B—C13—C8 118.5 (3) H22A—C22—H22B 109.5
C12A—C13—H13A 106.9 C18—C22—H22C 109.5
C12B—C13—H13A 112.7 H22A—C22—H22C 109.5
C8—C13—H13A 106.9 H22B—C22—H22C 109.5
C6—C1—C2—C3 1.5 (4) C12B—C11—C12A—C13 −121 (34)
C21—C1—C2—C3 −178.6 (3) C10—C11—C12A—C13 12 (3)
C1—C2—C3—C4 −1.4 (4) C12A—C11—C12B—C13 50 (25)
C2—C3—C4—C5 0.3 (4) C10—C11—C12B—C13 1(9)
C2—C3—C4—C7 177.6 (2) C11—C12A—C13—C12B 50 (25)
C3—C4—C5—C6 0.5 (4) C11—C12A—C13—C8 −9(3)
C7—C4—C5—C6 −176.5 (2) C11—C12B—C13—C12A −121 (34)
C2—C1—C6—C5 −0.7 (4) C11—C12B—C13—C8 3(9)
C21—C1—C6—C5 179.5 (3) C7—C8—C13—C12A −175.2 (17)
C4—C5—C6—C1 −0.4 (4) C9—C8—C13—C12A 1.1 (17)
C5—C4—C7—C8 −25.5 (5) C7—C8—C13—C12B 179 (4)
C3—C4—C7—C8 157.5 (3) C9—C8—C13—C12B −5(4)
C4—C7—C8—C13 −6.2 (6) C9—C10—C14—C15 −179.3 (3)
C4—C7—C8—C9 177.4 (3) C11—C10—C14—C15 3.0 (6)
C7—C8—C9—O1 −0.7 (5) C10—C14—C15—C20 18.6 (6)
C13—C8—C9—O1 −177.4 (4) C10—C14—C15—C16 −164.2 (3)
C7—C8—C9—C10 179.7 (3) C20—C15—C16—C17 −0.5 (4)
C13—C8—C9—C10 3.1 (5) C14—C15—C16—C17 −178.0 (3)
O1—C9—C10—C14 3.0 (5) C15—C16—C17—C18 0.1 (4)
C8—C9—C10—C14 −177.4 (3) C16—C17—C18—C19 −0.2 (4)
O1—C9—C10—C11 −179.1 (4) C16—C17—C18—C22 179.5 (3)
C8—C9—C10—C11 0.4 (5) C17—C18—C19—C20 0.6 (4)
C14—C10—C11—C12B 175 (4) C22—C18—C19—C20 −179.1 (3)
C9—C10—C11—C12B −3(4) C18—C19—C20—C15 −1.0 (4)
C14—C10—C11—C12A 170.2 (14) C16—C15—C20—C19 0.9 (4)
C9—C10—C11—C12A −7.5 (15) C14—C15—C20—C19 178.1 (3)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C8–C11,C12a,C13, C1–C6 and C15–C20 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C3—H3···Cg2i 0.95 2.78 3.538 (3) 137
C6—H6···Cg3ii 0.95 2.64 3.423 (3) 139
C16—H16···Cg3iii 0.95 2.85 3.496 (3) 126
C13—H13b···Cg1ii 0.99 2.89 3.642 (6) 134

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) −x+2, y+1/2, −z; (iii) −x+3, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2352).

References

  1. Abaee, M. S., Mojtahedi, M. M., Zahedi, M. M., Sharifi, R., Mesbah, A. W. & Massa, W. (2007). Synth. Commun. 37, 2949–2957.
  2. Brandenburg, K. (2011). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Guo, H.-M., Liu, L. & Jian, F.-F. (2008). Acta Cryst. E64, o1626. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Shi, X., Li, S. & Liu, Z. (2008). Acta Cryst. E64, o2199. [DOI] [PMC free article] [PubMed]
  6. Stoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDSI Software Stoe & Cie GmbH, Darmstadt, Germany.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811055632/su2352sup1.cif

e-68-0o355-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811055632/su2352Isup2.hkl

e-68-0o355-Isup2.hkl (82.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811055632/su2352Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES