Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):o356. doi: 10.1107/S1600536812000372

(4Z,6Z)-4,6-Bis(4-meth­oxy­benzyl­idene)-2,2-dimethyl-1,3-dioxan-5-one

Mohammad M Mojtahedi a, Werner Massa b,*, M Saeed Abaee a,*, A Wahid Mesbah a
PMCID: PMC3275038  PMID: 22346983

Abstract

The title compound, C22H22O5, crystallizes with two independent mol­ecules in the asymmetric unit, both of which possess pseudo-C s symmetry. The central 1,3-dioxanone rings have envelope conformations, with the C atom bearing the two methyl groups at the flap. The benzene rings of the meth­oxy­benzyl­idene units, attached in the 4- and 6-positions on the central 1,3-dioxanone rings, are tilted in the same direction with dihedral angles varying between 8.2 (1) and 18.1 (1)°. The crystal packing is influenced by π-stacking inter­actions of the parallel displaced type [centroid–centroid distance of 3.723 (1) Å for mol­ecule 1 and 3.884 (1) Å for mol­ecule 2, with ring slippages of 1.432 and 1.613 Å, respectively] and the T-shaped type, with the long mol­ecular axes all aligned along [010].

Related literature

For the synthesis of bis­aryl­idenes of hetero- and homocyclic ketones, see: Abaee et al. (2008a ,b ). For the crystal structures of similar compounds, see: Abaee et al. (2012); Nesterov et al. (2011); Shahani et al. (2010). For details concerning π-stacking inter­actions, see: Hunter & Sanders (1990).graphic file with name e-68-0o356-scheme1.jpg

Experimental

Crystal data

  • C22H22O5

  • M r = 366.39

  • Monoclinic, Inline graphic

  • a = 9.2400 (7) Å

  • b = 40.384 (4) Å

  • c = 10.1643 (8) Å

  • β = 91.988 (9)°

  • V = 3790.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.45 × 0.24 × 0.03 mm

Data collection

  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.972, T max = 1.000

  • 28928 measured reflections

  • 6486 independent reflections

  • 3306 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.058

  • S = 0.87

  • 6486 reflections

  • 495 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: EXPOSE (Stoe & Cie, 1999); cell refinement: CELL (Stoe & Cie, 1999); data reduction: INTEGRATE (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812000372/su2363sup1.cif

e-68-0o356-sup1.cif (33.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000372/su2363Isup2.hkl

e-68-0o356-Isup2.hkl (311.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000372/su2363Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg(II_2) is the centroid of ring II (C8–C13) of mol­ecule 2.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg(II_2)i 0.95 2.68 3.604 (2) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Ministry of Science, Research and Technology of Iran for partial financial support of this work.

supplementary crystallographic information

Comment

In the course of our investigations on the synthesis of bisarylidenes of hetero- and homo-cyclic ketones (Abaee et al., 2008a,b), we herein report on the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (1 and 2, Fig. 1), both having pseudo-Cs symmetry. The bond distances and angles are close to those observed in similar compounds (Abaee et al., 2012; Nesterov et al., 2011; Shahani et al., 2010).

The two independent molecules differ mainly in the degree of bending of the benzene substituents with respect to the almost planar part of the central 1,3-dioxanone ring [plane I: (O1,C1-C3,O2); max. deviation 0.0584 (18) Å in molecule 1, and 0.0166 (18) Å in molecule 2], as shown in Fig. 1. The dihedral angles between this mean plane and the benzene rings, II [C8–C13] and III [C16–C21], are respectively, 17.4 (1) and 18.1 (1)° for molecule 1, and 15.7 (1) and 8.2 (1)° for molecule 2. The benzene rings are inclined to one another by 24.8 (1) in molecule 1, and 13.7 (1)° in molecule 2. Thus, molecule 2 is closer to planarity than molecule 1.

The crystal packing is influenced by π-stacking interactions (Hunter & Sanders, 1990) in a parallel displaced way concerning benzene ring II (C8–C13) and its symmetry equivalent in both independent molecules [symmetry center: -x, -y, -z+1 for molecule 1, and -x+1, -y+2, -z+2 for molecule 2]. The centroid-centroid distances are 3.723 (1) Å for molecule 1, and 3.884 (1) Å for molecule 2, with ring slippages of 1.432 and 1.613 Å, respectively. In addition, a T-shaped π-stacking contact is observed, involving the same benzene ring, II of molecule 1, via a C–H···π interaction with an equivalent benzene ring II of molecule 2 (Table 1). These interactions result in a mutually perpendicular orientation of molecules 1 and 2, and a parallel orientation of the benzene rings II of all molecules of type 1 to each other and all molecules of type 2 to each other. All the long axes of both molecules are oriented parallel to the [010] direction (Fig. 2).

Experimental

A mixture of 2,2-dimethyl-1,3-dioxan-5-one (2 mmol), 4-methoxybenzaldehyde (4 mmol), diethylamine (8 mmol), and MgBr2.OEt2 (0.2 mmol, 10 mol%) was stirred at room temperature under an atmosphere of argon for 2 h. The progress of the reaction was checked by TLC using a 1:4 mixture of EtOAc/hexane. At the end of the reaction, the mixture was diluted by CH2Cl2 and washed with brine. The organic layer was dried using Na2SO4 and concentrated under reduced pressure. The product was isolated (83%) by column chromatography over silicagel using a 1:4 mixture of EtOAc/hexane. The solid product was recrystallized from EtOAc, giving yellow plate-like crystals of the title compound.

Refinement

All the H atoms could be located in a difference Fourier map. In the final cycles of refinement they were included in calculated positions and treated as riding atoms: C–H = 0.95 and 0.98 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k x Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

A view of the two independent molecules of the title compound, with atom numbering and 50% probability displacement ellipsoids (a,c); schematic views of the two independent molecules (omitting H atoms) approximately along the central ring mean plane [O1,C1-C3,O2] (b,d).

Fig. 2.

Fig. 2.

Crystal packing of the title compound [O atoms red; H atoms omitted for clarity].

Crystal data

C22H22O5 F(000) = 1552
Mr = 366.39 Dx = 1.284 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8001 reflections
a = 9.2400 (7) Å θ = 2.0–25.9°
b = 40.384 (4) Å µ = 0.09 mm1
c = 10.1643 (8) Å T = 193 K
β = 91.988 (9)° Platelet, yellow
V = 3790.5 (6) Å3 0.45 × 0.24 × 0.03 mm
Z = 8

Data collection

Stoe IPDS diffractometer 6486 independent reflections
Radiation source: fine-focus sealed tube 3306 reflections with I > 2σ(I)
graphite Rint = 0.068
Detector resolution: 6.7 pixels mm-1 θmax = 25.0°, θmin = 2.1°
φ–scans h = −10→10
Absorption correction: multi-scan (Blessing, 1995) k = −48→48
Tmin = 0.972, Tmax = 1.000 l = −12→12
28928 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.010P)2] where P = (Fo2 + 2Fc2)/3
6486 reflections (Δ/σ)max = 0.001
495 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1_1 0.13652 (14) 0.09396 (3) 0.47980 (12) 0.0350 (3)
O2_1 0.11486 (14) 0.15136 (3) 0.46692 (12) 0.0373 (3)
O3_1 −0.20552 (17) 0.11456 (3) 0.32822 (14) 0.0513 (4)
O4_1 0.27071 (16) −0.06434 (3) 0.36675 (13) 0.0474 (4)
O5_1 0.06933 (19) 0.31337 (3) 0.40567 (16) 0.0695 (5)
C1_1 0.0103 (2) 0.08847 (4) 0.40709 (17) 0.0312 (5)
C2_1 −0.0809 (2) 0.11758 (4) 0.37529 (18) 0.0345 (5)
C3_1 −0.0170 (2) 0.15054 (4) 0.39966 (18) 0.0327 (5)
C4_1 0.1442 (2) 0.12406 (4) 0.55320 (17) 0.0318 (5)
C5_1 0.2989 (2) 0.12787 (5) 0.5977 (2) 0.0465 (5)
H5A_1 0.3605 0.1273 0.5212 0.070*
H5B_1 0.3261 0.1097 0.6578 0.070*
H5C_1 0.3118 0.1491 0.6435 0.070*
C6_1 0.0396 (2) 0.12348 (5) 0.66347 (18) 0.0452 (6)
H6A_1 −0.0584 0.1193 0.6274 0.068*
H6B_1 0.0420 0.1449 0.7090 0.068*
H6C_1 0.0672 0.1059 0.7258 0.068*
C7_1 −0.0214 (2) 0.05840 (4) 0.35759 (17) 0.0338 (5)
H7_1 −0.1112 0.0570 0.3095 0.041*
C8_1 0.0604 (2) 0.02747 (4) 0.36605 (17) 0.0313 (5)
C9_1 0.1886 (2) 0.02302 (4) 0.43971 (19) 0.0377 (5)
H9_1 0.2276 0.0411 0.4894 0.045*
C10_1 0.2614 (2) −0.00718 (4) 0.44252 (19) 0.0391 (5)
H10_1 0.3486 −0.0096 0.4940 0.047*
C11_1 0.2071 (2) −0.03357 (4) 0.37075 (19) 0.0361 (5)
C12_1 0.0799 (2) −0.02982 (5) 0.29576 (19) 0.0410 (5)
H12_1 0.0423 −0.0478 0.2451 0.049*
C13_1 0.0080 (2) 0.00014 (4) 0.29488 (18) 0.0374 (5)
H13_1 −0.0800 0.0022 0.2443 0.045*
C14_1 0.3863 (2) −0.07054 (5) 0.4593 (2) 0.0530 (6)
H14A_1 0.4149 −0.0939 0.4545 0.079*
H14B_1 0.3547 −0.0656 0.5482 0.079*
H14C_1 0.4691 −0.0565 0.4392 0.079*
C15_1 −0.0773 (2) 0.17839 (4) 0.35254 (19) 0.0393 (5)
H15_1 −0.1626 0.1754 0.2990 0.047*
C16_1 −0.0316 (2) 0.21270 (5) 0.37103 (19) 0.0392 (5)
C17_1 −0.0991 (3) 0.23727 (5) 0.2980 (3) 0.0814 (9)
H17_1 −0.1731 0.2312 0.2354 0.098*
C18_1 −0.0641 (3) 0.27025 (6) 0.3117 (3) 0.0900 (10)
H18_1 −0.1133 0.2863 0.2586 0.108*
C19_1 0.0407 (2) 0.27998 (5) 0.4012 (2) 0.0472 (6)
C20_1 0.1084 (2) 0.25658 (5) 0.4774 (2) 0.0513 (6)
H20_1 0.1803 0.2630 0.5416 0.062*
C21_1 0.0729 (2) 0.22334 (5) 0.4616 (2) 0.0487 (6)
H21_1 0.1223 0.2074 0.5150 0.058*
C22_1 0.1718 (3) 0.32471 (5) 0.5016 (3) 0.0716 (8)
H22A_1 0.1857 0.3486 0.4913 0.107*
H22B_1 0.2642 0.3133 0.4905 0.107*
H22C_1 0.1367 0.3201 0.5896 0.107*
O1_2 0.32537 (14) 0.90895 (3) 0.94767 (12) 0.0394 (4)
O2_2 0.36036 (14) 0.85187 (3) 0.92517 (12) 0.0393 (3)
O3_2 0.60877 (18) 0.89453 (3) 0.72449 (15) 0.0632 (5)
O4_2 0.20381 (16) 1.07102 (3) 0.95326 (13) 0.0498 (4)
O5_2 0.45844 (18) 0.69115 (3) 0.84894 (15) 0.0636 (5)
C1_2 0.4331 (2) 0.91701 (4) 0.86175 (17) 0.0349 (5)
C2_2 0.5116 (2) 0.88934 (4) 0.80197 (19) 0.0400 (5)
C3_2 0.4737 (2) 0.85542 (5) 0.83962 (18) 0.0360 (5)
C4_2 0.3432 (2) 0.87840 (4) 1.01609 (18) 0.0355 (5)
C5_2 0.2014 (2) 0.87194 (5) 1.0805 (2) 0.0542 (6)
H5A_2 0.1239 0.8699 1.0126 0.081*
H5B_2 0.1797 0.8903 1.1395 0.081*
H5C_2 0.2083 0.8513 1.1312 0.081*
C6_2 0.4701 (2) 0.88003 (5) 1.11275 (18) 0.0491 (6)
H6A_2 0.5581 0.8854 1.0660 0.074*
H6B_2 0.4824 0.8585 1.1566 0.074*
H6C_2 0.4526 0.8971 1.1786 0.074*
C7_2 0.4550 (2) 0.94842 (4) 0.82629 (17) 0.0369 (5)
H7_2 0.5285 0.9512 0.7641 0.044*
C8_2 0.3864 (2) 0.97912 (4) 0.86593 (18) 0.0340 (5)
C9_2 0.2943 (2) 0.98221 (4) 0.97158 (18) 0.0375 (5)
H9_2 0.2725 0.9631 1.0219 0.045*
C10_2 0.2337 (2) 1.01245 (4) 1.00494 (19) 0.0389 (5)
H10_2 0.1740 1.0140 1.0789 0.047*
C11_2 0.2602 (2) 1.04031 (4) 0.93058 (19) 0.0369 (5)
C12_2 0.3513 (2) 1.03770 (5) 0.82468 (19) 0.0436 (5)
H12_2 0.3702 1.0567 0.7727 0.052*
C13_2 0.4136 (2) 1.00793 (4) 0.79498 (18) 0.0394 (5)
H13_2 0.4775 1.0069 0.7238 0.047*
C14_2 0.1207 (3) 1.07459 (5) 1.0694 (2) 0.0588 (7)
H14A_2 0.0875 1.0975 1.0766 0.088*
H14B_2 0.1812 1.0689 1.1472 0.088*
H14C_2 0.0367 1.0598 1.0636 0.088*
C15_2 0.5357 (2) 0.82868 (4) 0.78873 (18) 0.0396 (5)
H15_2 0.6068 0.8334 0.7261 0.047*
C16_2 0.5129 (2) 0.79356 (5) 0.81271 (18) 0.0384 (5)
C17_2 0.5856 (3) 0.77038 (5) 0.7371 (2) 0.0535 (6)
H17_2 0.6500 0.7781 0.6729 0.064*
C18_2 0.5669 (3) 0.73688 (5) 0.7525 (2) 0.0592 (7)
H18_2 0.6186 0.7219 0.6994 0.071*
C19_2 0.4736 (2) 0.72471 (5) 0.8443 (2) 0.0466 (6)
C20_2 0.4040 (2) 0.74698 (5) 0.9235 (2) 0.0445 (5)
H20_2 0.3425 0.7391 0.9895 0.053*
C21_2 0.4227 (2) 0.78064 (5) 0.90765 (19) 0.0440 (5)
H21_2 0.3728 0.7954 0.9628 0.053*
C22_2 0.3599 (3) 0.67802 (5) 0.9400 (2) 0.0658 (7)
H22A_2 0.3567 0.6539 0.9317 0.099*
H22B_2 0.2631 0.6872 0.9213 0.099*
H22C_2 0.3921 0.6840 1.0298 0.099*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1_1 0.0324 (9) 0.0299 (7) 0.0422 (8) 0.0016 (6) −0.0044 (7) −0.0061 (6)
O2_1 0.0329 (9) 0.0313 (7) 0.0472 (8) −0.0001 (6) −0.0053 (7) 0.0060 (6)
O3_1 0.0432 (11) 0.0466 (8) 0.0629 (10) −0.0014 (7) −0.0172 (9) 0.0026 (7)
O4_1 0.0548 (10) 0.0340 (8) 0.0533 (9) 0.0090 (7) 0.0024 (8) −0.0062 (6)
O5_1 0.0754 (13) 0.0333 (8) 0.0974 (13) −0.0039 (8) −0.0303 (11) 0.0086 (8)
C1_1 0.0283 (13) 0.0357 (11) 0.0296 (10) −0.0016 (9) −0.0002 (10) −0.0019 (8)
C2_1 0.0306 (13) 0.0377 (12) 0.0347 (11) 0.0003 (10) −0.0048 (11) 0.0014 (9)
C3_1 0.0287 (13) 0.0342 (11) 0.0351 (11) −0.0008 (9) −0.0026 (10) 0.0012 (9)
C4_1 0.0337 (13) 0.0256 (10) 0.0356 (11) 0.0011 (9) −0.0067 (10) 0.0012 (8)
C5_1 0.0423 (14) 0.0340 (11) 0.0620 (14) −0.0005 (10) −0.0151 (12) −0.0016 (10)
C6_1 0.0534 (15) 0.0464 (12) 0.0360 (12) −0.0008 (11) 0.0025 (11) −0.0041 (10)
C7_1 0.0326 (12) 0.0361 (11) 0.0326 (11) −0.0046 (9) 0.0014 (10) −0.0018 (8)
C8_1 0.0308 (13) 0.0318 (10) 0.0314 (10) −0.0028 (9) 0.0020 (10) −0.0013 (8)
C9_1 0.0373 (14) 0.0328 (11) 0.0429 (12) −0.0005 (9) −0.0010 (11) −0.0088 (9)
C10_1 0.0326 (13) 0.0396 (12) 0.0450 (12) 0.0035 (10) 0.0004 (11) −0.0080 (9)
C11_1 0.0407 (14) 0.0302 (11) 0.0380 (12) 0.0018 (9) 0.0102 (11) −0.0024 (9)
C12_1 0.0479 (15) 0.0341 (11) 0.0409 (12) −0.0044 (10) 0.0002 (12) −0.0068 (9)
C13_1 0.0394 (14) 0.0366 (11) 0.0359 (11) −0.0034 (9) −0.0011 (10) −0.0022 (9)
C14_1 0.0503 (16) 0.0426 (12) 0.0661 (16) 0.0112 (11) 0.0045 (14) 0.0027 (11)
C15_1 0.0349 (13) 0.0379 (12) 0.0445 (12) −0.0002 (10) −0.0065 (10) 0.0058 (9)
C16_1 0.0376 (14) 0.0356 (11) 0.0438 (12) 0.0008 (10) −0.0074 (11) 0.0065 (9)
C17_1 0.096 (2) 0.0414 (14) 0.102 (2) −0.0100 (14) −0.0660 (18) 0.0153 (13)
C18_1 0.105 (3) 0.0406 (15) 0.119 (2) −0.0060 (15) −0.074 (2) 0.0229 (14)
C19_1 0.0454 (15) 0.0329 (12) 0.0625 (15) 0.0001 (10) −0.0108 (13) 0.0072 (10)
C20_1 0.0544 (16) 0.0376 (13) 0.0602 (15) 0.0036 (11) −0.0202 (12) 0.0043 (11)
C21_1 0.0537 (16) 0.0347 (12) 0.0565 (14) 0.0059 (11) −0.0147 (13) 0.0075 (10)
C22_1 0.069 (2) 0.0429 (14) 0.101 (2) −0.0042 (13) −0.0219 (17) −0.0129 (13)
O1_2 0.0422 (9) 0.0335 (7) 0.0431 (8) 0.0003 (6) 0.0078 (7) 0.0037 (6)
O2_2 0.0422 (9) 0.0346 (7) 0.0414 (8) −0.0036 (6) 0.0037 (7) −0.0064 (6)
O3_2 0.0748 (12) 0.0501 (8) 0.0671 (10) −0.0040 (8) 0.0366 (10) −0.0040 (7)
O4_2 0.0613 (10) 0.0346 (8) 0.0542 (9) 0.0054 (7) 0.0112 (8) 0.0083 (6)
O5_2 0.0791 (12) 0.0335 (8) 0.0788 (11) 0.0083 (8) 0.0117 (10) −0.0005 (7)
C1_2 0.0367 (13) 0.0365 (11) 0.0316 (11) −0.0030 (9) 0.0023 (10) 0.0006 (9)
C2_2 0.0452 (14) 0.0377 (11) 0.0371 (12) −0.0014 (10) −0.0015 (11) −0.0031 (9)
C3_2 0.0379 (13) 0.0392 (12) 0.0307 (11) −0.0009 (10) −0.0012 (10) −0.0033 (9)
C4_2 0.0432 (14) 0.0260 (10) 0.0376 (11) −0.0023 (9) 0.0047 (11) −0.0020 (9)
C5_2 0.0527 (16) 0.0427 (12) 0.0687 (15) −0.0015 (11) 0.0248 (13) −0.0001 (10)
C6_2 0.0623 (17) 0.0491 (13) 0.0357 (12) −0.0031 (11) −0.0038 (12) −0.0002 (10)
C7_2 0.0391 (13) 0.0397 (12) 0.0318 (11) −0.0067 (9) −0.0006 (10) −0.0017 (9)
C8_2 0.0368 (13) 0.0314 (11) 0.0336 (11) −0.0042 (9) −0.0033 (10) 0.0020 (8)
C9_2 0.0423 (13) 0.0342 (11) 0.0360 (12) −0.0042 (9) −0.0004 (10) 0.0057 (9)
C10_2 0.0445 (14) 0.0340 (11) 0.0383 (12) −0.0009 (10) 0.0030 (10) 0.0046 (9)
C11_2 0.0393 (13) 0.0310 (11) 0.0401 (12) −0.0012 (9) −0.0042 (11) 0.0015 (9)
C12_2 0.0505 (14) 0.0361 (12) 0.0443 (13) −0.0066 (10) 0.0021 (11) 0.0093 (9)
C13_2 0.0436 (13) 0.0377 (11) 0.0369 (12) −0.0065 (10) 0.0038 (11) 0.0024 (9)
C14_2 0.0650 (17) 0.0450 (13) 0.0681 (16) 0.0081 (12) 0.0236 (14) 0.0004 (11)
C15_2 0.0435 (14) 0.0407 (12) 0.0343 (11) 0.0030 (10) −0.0011 (10) −0.0037 (9)
C16_2 0.0396 (14) 0.0409 (12) 0.0340 (11) 0.0044 (10) −0.0068 (10) −0.0037 (9)
C17_2 0.0683 (17) 0.0409 (13) 0.0519 (14) 0.0055 (12) 0.0126 (13) −0.0073 (10)
C18_2 0.0732 (19) 0.0417 (13) 0.0634 (16) 0.0142 (12) 0.0136 (14) −0.0076 (11)
C19_2 0.0526 (15) 0.0330 (12) 0.0535 (14) 0.0092 (11) −0.0086 (12) −0.0029 (10)
C20_2 0.0501 (15) 0.0385 (12) 0.0447 (13) 0.0059 (10) −0.0007 (11) 0.0007 (10)
C21_2 0.0489 (15) 0.0405 (12) 0.0426 (12) 0.0067 (10) 0.0000 (11) −0.0074 (9)
C22_2 0.0771 (19) 0.0446 (13) 0.0756 (17) 0.0009 (13) 0.0013 (16) 0.0070 (12)

Geometric parameters (Å, °)

O1_1—C1_1 1.377 (2) O1_2—C1_2 1.386 (2)
O1_1—C4_1 1.427 (2) O1_2—C4_2 1.423 (2)
O2_1—C3_1 1.377 (2) O2_2—C3_2 1.392 (2)
O2_1—C4_1 1.429 (2) O2_2—C4_2 1.427 (2)
O3_1—C2_1 1.237 (2) O3_2—C2_2 1.233 (2)
O4_1—C11_1 1.376 (2) O4_2—C11_2 1.368 (2)
O4_1—C14_1 1.421 (3) O4_2—C14_2 1.438 (2)
O5_1—C19_1 1.375 (2) O5_2—C19_2 1.363 (2)
O5_1—C22_1 1.412 (3) O5_2—C22_2 1.423 (2)
C1_1—C7_1 1.343 (2) C1_2—C7_2 1.336 (2)
C1_1—C2_1 1.476 (3) C1_2—C2_2 1.474 (2)
C2_1—C3_1 1.474 (3) C2_2—C3_2 1.468 (3)
C3_1—C15_1 1.336 (3) C3_2—C15_2 1.335 (2)
C4_1—C5_1 1.493 (3) C4_2—C6_2 1.505 (3)
C4_1—C6_1 1.505 (2) C4_2—C5_2 1.508 (3)
C5_1—H5A_1 0.9800 C5_2—H5A_2 0.9800
C5_1—H5B_1 0.9800 C5_2—H5B_2 0.9800
C5_1—H5C_1 0.9800 C5_2—H5C_2 0.9800
C6_1—H6A_1 0.9800 C6_2—H6A_2 0.9800
C6_1—H6B_1 0.9800 C6_2—H6B_2 0.9800
C6_1—H6C_1 0.9800 C6_2—H6C_2 0.9800
C7_1—C8_1 1.461 (2) C7_2—C8_2 1.456 (2)
C7_1—H7_1 0.9500 C7_2—H7_2 0.9500
C8_1—C9_1 1.391 (3) C8_2—C13_2 1.396 (2)
C8_1—C13_1 1.397 (2) C8_2—C9_2 1.399 (2)
C9_1—C10_1 1.392 (3) C9_2—C10_2 1.390 (2)
C9_1—H9_1 0.9500 C9_2—H9_2 0.9500
C10_1—C11_1 1.376 (3) C10_2—C11_2 1.382 (2)
C10_1—H10_1 0.9500 C10_2—H10_2 0.9500
C11_1—C12_1 1.387 (3) C11_2—C12_2 1.393 (2)
C12_1—C13_1 1.380 (3) C12_2—C13_2 1.371 (2)
C12_1—H12_1 0.9500 C12_2—H12_2 0.9500
C13_1—H13_1 0.9500 C13_2—H13_2 0.9500
C14_1—H14A_1 0.9800 C14_2—H14A_2 0.9800
C14_1—H14B_1 0.9800 C14_2—H14B_2 0.9800
C14_1—H14C_1 0.9800 C14_2—H14C_2 0.9800
C15_1—C16_1 1.459 (3) C15_2—C16_2 1.455 (3)
C15_1—H15_1 0.9500 C15_2—H15_2 0.9500
C16_1—C17_1 1.376 (3) C16_2—C21_2 1.398 (2)
C16_1—C21_1 1.379 (3) C16_2—C17_2 1.398 (2)
C17_1—C18_1 1.376 (3) C17_2—C18_2 1.373 (3)
C17_1—H17_1 0.9500 C17_2—H17_2 0.9500
C18_1—C19_1 1.363 (3) C18_2—C19_2 1.383 (3)
C18_1—H18_1 0.9500 C18_2—H18_2 0.9500
C19_1—C20_1 1.361 (3) C19_2—C20_2 1.380 (2)
C20_1—C21_1 1.390 (3) C20_2—C21_2 1.380 (3)
C20_1—H20_1 0.9500 C20_2—H20_2 0.9500
C21_1—H21_1 0.9500 C21_2—H21_2 0.9500
C22_1—H22A_1 0.9800 C22_2—H22A_2 0.9800
C22_1—H22B_1 0.9800 C22_2—H22B_2 0.9800
C22_1—H22C_1 0.9800 C22_2—H22C_2 0.9800
C1_1—O1_1—C4_1 116.33 (14) C1_2—O1_2—C4_2 115.98 (14)
C3_1—O2_1—C4_1 115.59 (14) C3_2—O2_2—C4_2 115.48 (13)
C11_1—O4_1—C14_1 116.85 (16) C11_2—O4_2—C14_2 116.54 (14)
C19_1—O5_1—C22_1 117.70 (18) C19_2—O5_2—C22_2 117.48 (16)
C7_1—C1_1—O1_1 121.09 (17) C7_2—C1_2—O1_2 120.79 (16)
C7_1—C1_1—C2_1 121.51 (19) C7_2—C1_2—C2_2 121.82 (16)
O1_1—C1_1—C2_1 117.13 (16) O1_2—C1_2—C2_2 117.12 (15)
O3_1—C2_1—C3_1 121.07 (18) O3_2—C2_2—C3_2 120.72 (17)
O3_1—C2_1—C1_1 121.52 (18) O3_2—C2_2—C1_2 120.91 (16)
C3_1—C2_1—C1_1 117.40 (19) C3_2—C2_2—C1_2 118.35 (16)
C15_1—C3_1—O2_1 120.54 (18) C15_2—C3_2—O2_2 120.08 (17)
C15_1—C3_1—C2_1 122.7 (2) C15_2—C3_2—C2_2 122.99 (17)
O2_1—C3_1—C2_1 116.61 (17) O2_2—C3_2—C2_2 116.76 (16)
O1_1—C4_1—O2_1 109.36 (14) O1_2—C4_2—O2_2 110.35 (14)
O1_1—C4_1—C5_1 106.03 (14) O1_2—C4_2—C6_2 110.84 (16)
O2_1—C4_1—C5_1 105.43 (15) O2_2—C4_2—C6_2 110.73 (16)
O1_1—C4_1—C6_1 110.76 (14) O1_2—C4_2—C5_2 105.92 (16)
O2_1—C4_1—C6_1 110.87 (15) O2_2—C4_2—C5_2 105.59 (15)
C5_1—C4_1—C6_1 114.12 (16) C6_2—C4_2—C5_2 113.18 (17)
C4_1—C5_1—H5A_1 109.5 C4_2—C5_2—H5A_2 109.5
C4_1—C5_1—H5B_1 109.5 C4_2—C5_2—H5B_2 109.5
H5A_1—C5_1—H5B_1 109.5 H5A_2—C5_2—H5B_2 109.5
C4_1—C5_1—H5C_1 109.5 C4_2—C5_2—H5C_2 109.5
H5A_1—C5_1—H5C_1 109.5 H5A_2—C5_2—H5C_2 109.5
H5B_1—C5_1—H5C_1 109.5 H5B_2—C5_2—H5C_2 109.5
C4_1—C6_1—H6A_1 109.5 C4_2—C6_2—H6A_2 109.5
C4_1—C6_1—H6B_1 109.5 C4_2—C6_2—H6B_2 109.5
H6A_1—C6_1—H6B_1 109.5 H6A_2—C6_2—H6B_2 109.5
C4_1—C6_1—H6C_1 109.5 C4_2—C6_2—H6C_2 109.5
H6A_1—C6_1—H6C_1 109.5 H6A_2—C6_2—H6C_2 109.5
H6B_1—C6_1—H6C_1 109.5 H6B_2—C6_2—H6C_2 109.5
C1_1—C7_1—C8_1 130.2 (2) C1_2—C7_2—C8_2 131.48 (17)
C1_1—C7_1—H7_1 114.9 C1_2—C7_2—H7_2 114.3
C8_1—C7_1—H7_1 114.9 C8_2—C7_2—H7_2 114.3
C9_1—C8_1—C13_1 116.77 (18) C13_2—C8_2—C9_2 116.59 (17)
C9_1—C8_1—C7_1 124.86 (17) C13_2—C8_2—C7_2 118.59 (16)
C13_1—C8_1—C7_1 118.38 (19) C9_2—C8_2—C7_2 124.82 (16)
C8_1—C9_1—C10_1 121.72 (18) C10_2—C9_2—C8_2 121.77 (17)
C8_1—C9_1—H9_1 119.1 C10_2—C9_2—H9_2 119.1
C10_1—C9_1—H9_1 119.1 C8_2—C9_2—H9_2 119.1
C11_1—C10_1—C9_1 120.0 (2) C11_2—C10_2—C9_2 120.06 (17)
C11_1—C10_1—H10_1 120.0 C11_2—C10_2—H10_2 120.0
C9_1—C10_1—H10_1 120.0 C9_2—C10_2—H10_2 120.0
O4_1—C11_1—C10_1 124.5 (2) O4_2—C11_2—C10_2 124.74 (16)
O4_1—C11_1—C12_1 115.93 (18) O4_2—C11_2—C12_2 116.28 (16)
C10_1—C11_1—C12_1 119.56 (18) C10_2—C11_2—C12_2 118.98 (17)
C13_1—C12_1—C11_1 119.87 (19) C13_2—C12_2—C11_2 120.41 (17)
C13_1—C12_1—H12_1 120.1 C13_2—C12_2—H12_2 119.8
C11_1—C12_1—H12_1 120.1 C11_2—C12_2—H12_2 119.8
C12_1—C13_1—C8_1 122.1 (2) C12_2—C13_2—C8_2 122.14 (17)
C12_1—C13_1—H13_1 119.0 C12_2—C13_2—H13_2 118.9
C8_1—C13_1—H13_1 119.0 C8_2—C13_2—H13_2 118.9
O4_1—C14_1—H14A_1 109.5 O4_2—C14_2—H14A_2 109.5
O4_1—C14_1—H14B_1 109.5 O4_2—C14_2—H14B_2 109.5
H14A_1—C14_1—H14B_1 109.5 H14A_2—C14_2—H14B_2 109.5
O4_1—C14_1—H14C_1 109.5 O4_2—C14_2—H14C_2 109.5
H14A_1—C14_1—H14C_1 109.5 H14A_2—C14_2—H14C_2 109.5
H14B_1—C14_1—H14C_1 109.5 H14B_2—C14_2—H14C_2 109.5
C3_1—C15_1—C16_1 129.6 (2) C3_2—C15_2—C16_2 131.06 (18)
C3_1—C15_1—H15_1 115.2 C3_2—C15_2—H15_2 114.5
C16_1—C15_1—H15_1 115.2 C16_2—C15_2—H15_2 114.5
C17_1—C16_1—C21_1 115.4 (2) C21_2—C16_2—C17_2 116.04 (17)
C17_1—C16_1—C15_1 119.5 (2) C21_2—C16_2—C15_2 124.91 (16)
C21_1—C16_1—C15_1 125.10 (19) C17_2—C16_2—C15_2 119.04 (17)
C18_1—C17_1—C16_1 122.9 (2) C18_2—C17_2—C16_2 122.16 (19)
C18_1—C17_1—H17_1 118.6 C18_2—C17_2—H17_2 118.9
C16_1—C17_1—H17_1 118.6 C16_2—C17_2—H17_2 118.9
C19_1—C18_1—C17_1 120.3 (2) C17_2—C18_2—C19_2 120.72 (19)
C19_1—C18_1—H18_1 119.8 C17_2—C18_2—H18_2 119.6
C17_1—C18_1—H18_1 119.8 C19_2—C18_2—H18_2 119.6
C20_1—C19_1—C18_1 118.8 (2) O5_2—C19_2—C20_2 125.26 (19)
C20_1—C19_1—O5_1 125.3 (2) O5_2—C19_2—C18_2 116.33 (17)
C18_1—C19_1—O5_1 115.9 (2) C20_2—C19_2—C18_2 118.41 (18)
C19_1—C20_1—C21_1 120.1 (2) C19_2—C20_2—C21_2 120.74 (19)
C19_1—C20_1—H20_1 119.9 C19_2—C20_2—H20_2 119.6
C21_1—C20_1—H20_1 119.9 C21_2—C20_2—H20_2 119.6
C16_1—C21_1—C20_1 122.4 (2) C20_2—C21_2—C16_2 121.86 (17)
C16_1—C21_1—H21_1 118.8 C20_2—C21_2—H21_2 119.1
C20_1—C21_1—H21_1 118.8 C16_2—C21_2—H21_2 119.1
O5_1—C22_1—H22A_1 109.5 O5_2—C22_2—H22A_2 109.5
O5_1—C22_1—H22B_1 109.5 O5_2—C22_2—H22B_2 109.5
H22A_1—C22_1—H22B_1 109.5 H22A_2—C22_2—H22B_2 109.5
O5_1—C22_1—H22C_1 109.5 O5_2—C22_2—H22C_2 109.5
H22A_1—C22_1—H22C_1 109.5 H22A_2—C22_2—H22C_2 109.5
H22B_1—C22_1—H22C_1 109.5 H22B_2—C22_2—H22C_2 109.5
C4_1—O1_1—C1_1—C7_1 −165.65 (15) C4_2—O1_2—C1_2—C7_2 −157.74 (19)
C4_1—O1_1—C1_1—C2_1 20.2 (2) C4_2—O1_2—C1_2—C2_2 28.1 (2)
C7_1—C1_1—C2_1—O3_1 16.9 (3) C7_2—C1_2—C2_2—O3_2 5.9 (3)
O1_1—C1_1—C2_1—O3_1 −168.91 (16) O1_2—C1_2—C2_2—O3_2 179.93 (19)
C7_1—C1_1—C2_1—C3_1 −162.07 (16) C7_2—C1_2—C2_2—C3_2 −175.7 (2)
O1_1—C1_1—C2_1—C3_1 12.1 (2) O1_2—C1_2—C2_2—C3_2 −1.6 (3)
C4_1—O2_1—C3_1—C15_1 157.51 (16) C4_2—O2_2—C3_2—C15_2 153.85 (19)
C4_1—O2_1—C3_1—C2_1 −26.6 (2) C4_2—O2_2—C3_2—C2_2 −30.8 (2)
O3_1—C2_1—C3_1—C15_1 −12.0 (3) O3_2—C2_2—C3_2—C15_2 −3.3 (3)
C1_1—C2_1—C3_1—C15_1 167.01 (17) C1_2—C2_2—C3_2—C15_2 178.3 (2)
O3_1—C2_1—C3_1—O2_1 172.26 (16) O3_2—C2_2—C3_2—O2_2 −178.54 (19)
C1_1—C2_1—C3_1—O2_1 −8.7 (2) C1_2—C2_2—C3_2—O2_2 3.0 (3)
C1_1—O1_1—C4_1—O2_1 −54.47 (19) C1_2—O1_2—C4_2—O2_2 −55.1 (2)
C1_1—O1_1—C4_1—C5_1 −167.69 (14) C1_2—O1_2—C4_2—C6_2 67.95 (19)
C1_1—O1_1—C4_1—C6_1 68.01 (19) C1_2—O1_2—C4_2—C5_2 −168.92 (16)
C3_1—O2_1—C4_1—O1_1 58.03 (18) C3_2—O2_2—C4_2—O1_2 56.5 (2)
C3_1—O2_1—C4_1—C5_1 171.65 (14) C3_2—O2_2—C4_2—C6_2 −66.6 (2)
C3_1—O2_1—C4_1—C6_1 −64.38 (19) C3_2—O2_2—C4_2—C5_2 170.52 (16)
O1_1—C1_1—C7_1—C8_1 −0.5 (3) O1_2—C1_2—C7_2—C8_2 2.7 (3)
C2_1—C1_1—C7_1—C8_1 173.45 (16) C2_2—C1_2—C7_2—C8_2 176.5 (2)
C1_1—C7_1—C8_1—C9_1 5.3 (3) C1_2—C7_2—C8_2—C13_2 −168.8 (2)
C1_1—C7_1—C8_1—C13_1 −174.35 (17) C1_2—C7_2—C8_2—C9_2 11.6 (4)
C13_1—C8_1—C9_1—C10_1 0.0 (3) C13_2—C8_2—C9_2—C10_2 −0.4 (3)
C7_1—C8_1—C9_1—C10_1 −179.61 (15) C7_2—C8_2—C9_2—C10_2 179.2 (2)
C8_1—C9_1—C10_1—C11_1 0.3 (3) C8_2—C9_2—C10_2—C11_2 2.0 (3)
C14_1—O4_1—C11_1—C10_1 10.7 (2) C14_2—O4_2—C11_2—C10_2 5.2 (3)
C14_1—O4_1—C11_1—C12_1 −169.49 (16) C14_2—O4_2—C11_2—C12_2 −174.45 (19)
C9_1—C10_1—C11_1—O4_1 179.90 (15) C9_2—C10_2—C11_2—O4_2 178.6 (2)
C9_1—C10_1—C11_1—C12_1 0.1 (3) C9_2—C10_2—C11_2—C12_2 −1.7 (3)
O4_1—C11_1—C12_1—C13_1 179.41 (15) O4_2—C11_2—C12_2—C13_2 179.6 (2)
C10_1—C11_1—C12_1—C13_1 −0.8 (3) C10_2—C11_2—C12_2—C13_2 −0.1 (3)
C11_1—C12_1—C13_1—C8_1 1.1 (3) C11_2—C12_2—C13_2—C8_2 1.7 (3)
C9_1—C8_1—C13_1—C12_1 −0.7 (3) C9_2—C8_2—C13_2—C12_2 −1.4 (3)
C7_1—C8_1—C13_1—C12_1 178.93 (15) C7_2—C8_2—C13_2—C12_2 178.9 (2)
O2_1—C3_1—C15_1—C16_1 −6.8 (3) O2_2—C3_2—C15_2—C16_2 −4.7 (3)
C2_1—C3_1—C15_1—C16_1 177.61 (16) C2_2—C3_2—C15_2—C16_2 −179.8 (2)
C3_1—C15_1—C16_1—C17_1 171.0 (2) C3_2—C15_2—C16_2—C21_2 −5.3 (4)
C3_1—C15_1—C16_1—C21_1 −11.7 (3) C3_2—C15_2—C16_2—C17_2 174.9 (2)
C21_1—C16_1—C17_1—C18_1 1.1 (4) C21_2—C16_2—C17_2—C18_2 1.6 (3)
C15_1—C16_1—C17_1—C18_1 178.6 (2) C15_2—C16_2—C17_2—C18_2 −178.6 (2)
C16_1—C17_1—C18_1—C19_1 −0.5 (5) C16_2—C17_2—C18_2—C19_2 0.3 (4)
C17_1—C18_1—C19_1—C20_1 −0.8 (4) C22_2—O5_2—C19_2—C20_2 1.9 (3)
C17_1—C18_1—C19_1—O5_1 178.9 (2) C22_2—O5_2—C19_2—C18_2 −178.2 (2)
C22_1—O5_1—C19_1—C20_1 −3.6 (3) C17_2—C18_2—C19_2—O5_2 177.7 (2)
C22_1—O5_1—C19_1—C18_1 176.8 (2) C17_2—C18_2—C19_2—C20_2 −2.4 (4)
C18_1—C19_1—C20_1—C21_1 1.4 (3) O5_2—C19_2—C20_2—C21_2 −177.6 (2)
O5_1—C19_1—C20_1—C21_1 −178.2 (2) C18_2—C19_2—C20_2—C21_2 2.5 (3)
C17_1—C16_1—C21_1—C20_1 −0.5 (3) C19_2—C20_2—C21_2—C16_2 −0.6 (3)
C15_1—C16_1—C21_1—C20_1 −177.87 (18) C17_2—C16_2—C21_2—C20_2 −1.5 (3)
C19_1—C20_1—C21_1—C16_1 −0.7 (3) C15_2—C16_2—C21_2—C20_2 178.8 (2)

Hydrogen-bond geometry (Å, °)

Cg(II_2) is the centroid of ring II (C8–C13) of molecule 2.
D—H···A D—H H···A D···A D—H···A
C13—H13···Cg(II_2)i 0.95 2.68 3.604 (2) 164

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2363).

References

  1. Abaee, M. S., Massa, W., Mojtahedi, M. M. & Mesbah, A. W. (2012). Acta Cryst. E68, o355. [DOI] [PMC free article] [PubMed]
  2. Abaee, M. S., Mojtahedi, M. M., Hamidi, V., Mesbah, A. W. & Massa, W. (2008a). Synthesis, pp. 2122–2126.
  3. Abaee, M. S., Mojtahedi, M. M., Sharifi, R., Zahedi, M. M., Mesbah, A. W. & Massa, W. (2008b). J. Chem. Res. pp. 388–389.
  4. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  5. Brandenburg, K. (2011). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.
  7. Nesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011). Acta Cryst. E67, o760–o761. [DOI] [PMC free article] [PubMed]
  8. Shahani, T., Fun, H.-K., Balaji, G. L., Vijayakumar, V. & Sarveswari, S. (2010). Acta Cryst. E66, o630–o631. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Stoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDSI Software Stoe & Cie, Darmstadt, Germany.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812000372/su2363sup1.cif

e-68-0o356-sup1.cif (33.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000372/su2363Isup2.hkl

e-68-0o356-Isup2.hkl (311.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000372/su2363Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES