Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):o362–o363. doi: 10.1107/S1600536811056169

1,3-Bis(biphenyl-4-yl)-2,2-dibromo-3-oxopropyl acetate

Jerry P Jasinski a,*, James A Golen a, B P Siddaraju b, B Narayana c, H S Yathirajan b
PMCID: PMC3275044  PMID: 22346989

Abstract

In the title compound, C29H22Br2O3, the dihedral angles between the mean planes of the benzene rings within each biphenyl group are 26.7 (8) and 30.9 (8)°. The mean planes of the terminal and inner benzene rings of the biphenyl groups bonded through a propan-1-one group in the V-shaped mol­ecule are oriented at angles of 66.1 (7) and 60.0 (8)°, respectively. The two Br atoms are opposite the propen-1-one group. Weak inter­molecular C—H⋯O and C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For chalcone derivatives exhibiting non-linear optical effects, see: Indira et al. (2002); Tam et al. (1989); Uchida et al. (1998). For the improvement of mol­ecular first-order hyperpolarizabilities, see: Zhao et al. (2002). For related dibromo chalcone structures, see: Butcher et al. (2007); Narayana et al. (2007); Sarojini et al. (2007); Yathirajan et al. (2007); For the synthesis of various chalcone derivatives, see: Samshuddin et al. (2011); Jasinski et al. (2010).graphic file with name e-68-0o362-scheme1.jpg

Experimental

Crystal data

  • C29H22Br2O3

  • M r = 578.29

  • Monoclinic, Inline graphic

  • a = 12.0497 (14) Å

  • b = 20.842 (2) Å

  • c = 9.9482 (10) Å

  • β = 98.743 (10)°

  • V = 2469.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.31 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.557, T max = 0.733

  • 22652 measured reflections

  • 5881 independent reflections

  • 3640 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.130

  • S = 1.02

  • 5881 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811056169/tk5043sup1.cif

e-68-0o362-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056169/tk5043Isup2.hkl

e-68-0o362-Isup2.hkl (287.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811056169/tk5043Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C24–C29 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O1i 0.98 2.41 3.336 (6) 158
C17—H17A⋯O3ii 0.95 2.47 3.369 (5) 158
C20—H20ACg4iii 0.95 2.82 3.707 (4) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

BPS thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Among several organic compounds exhibiting NLO effects, chalcone derivatives are important materials for their excellent blue light transmittance and good crystallizability. It has been observed that substitution of a bromo group on either of the phenyl rings greatly influences non-centrosymmetric crystal packing (Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002). Bromo substituents can obviously improve molecular first-order hyperpolarizabilities and can effectively reduce dipole-dipole interactions between molecules (Zhao et al., 2002). Chalcone derivatives usually have lower melting points, which can be a drawback when their crystals are used in optical instruments. Chalcone dibromides usually have higher melting points and are thermally stable. In order to synthesize the dibromo derivative of this chalcone, (2E)-1,3-di(biphenyl-4-yl)prop-2-en-1-one was brominated using bromine in acetic acid. But instead of the dibromo derivative of this chalcone, a new product 2,2-dibromo-1,3-di(biphenyl-4-yl)-3-oxopropyl acetate (I) has been obtained.

The crystal structures of some dibromo chalcones viz., 2,3-dibromo-3-(5-bromo-2-methoxyphenyl)-1-(2,4-dichlorophenyl) propan-1-one (Narayana et al., 2007), 2,3-dibromo-3-(4-bromo-6-methoxy -2-naphthyl)-1-(4-methoxyphenyl)propan-1-one (Sarojini et al., 2007), 2,3-dibromo-3-(5-bromo-6-methoxy-2-naphthyl)-1-(2,4-dichlorophenyl) propan-1-one (Yathirajan et al., 2007) and (2Z)-2-bromo-3-[3,5-dibromo-4-(ethylamino)phenyl]-1- (2,4-dichlorophenyl)prop-2-en-1-one (Butcher et al., 2007) have been reported. In continuation of our work on synthesis of various derivatives of chalcone (Samshuddin et al., 2011; Jasinski et al., 2010), the title chalcone dibromide, (I), was prepared and its crystal structure is reported.

In the crystal structure of (I), the dihedral angles between the mean planes of the benzene rings within each biphenyl group are 26.7 (8)° and 30.9 (8)° (Fig. 1). The mean planes of the terminal and inner benzene rings of the biphenyl groups bonded through a propan-1-one group in the V-shaped molecule are oriented at angles of 66.1 (7) and 60.0 (8)°, respectively. The two bromine atoms are opposite the propen-1-one group extending in an apical configuration. Weak C—H···O and C—H···Cg π-ring intermolecular interactions are observed in the crystal structure (Table 1, Fig. 2).

Experimental

To a solution of (2E)-1,3-di(biphenyl-4-yl)prop-2-en-1-one (3.60 g, 0.01 mol) in acetic acid (25 ml), bromine (1.60 g, 0.01 mol) in acetic acid (10 ml) was added slowly with stirring at 273 K. After completion of the addition of the bromine solution, the reaction mixture was stirred for 5 h. The solid obtained was filtered and recrystallized from acetone. Single crystals were grown from its methanol solution by slow evaporation. The yield of the compound was 86%. (m.p.: 445 K).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95–1.00 Å (CH) or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH) or 1.49 (CH3) × Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the a axis. Hydrogen atoms have been omitted for clarity.

Crystal data

C29H22Br2O3 F(000) = 1160
Mr = 578.29 Dx = 1.555 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2960 reflections
a = 12.0497 (14) Å θ = 3.0–30.0°
b = 20.842 (2) Å µ = 3.31 mm1
c = 9.9482 (10) Å T = 173 K
β = 98.743 (10)° Block, colourless
V = 2469.4 (5) Å3 0.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 5881 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3640 reflections with I > 2σ(I)
graphite Rint = 0.068
Detector resolution: 16.1500 pixels mm-1 θmax = 27.9°, θmin = 3.0°
ω scans h = −15→15
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −27→26
Tmin = 0.557, Tmax = 0.733 l = −13→12
22652 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.053P)2 + 0.4853P] where P = (Fo2 + 2Fc2)/3
5881 reflections (Δ/σ)max = 0.001
308 parameters Δρmax = 0.72 e Å3
0 restraints Δρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.44982 (4) 0.34440 (2) 0.13153 (5) 0.05921 (17)
Br2 0.42924 (4) 0.46937 (2) 0.31413 (5) 0.05352 (15)
O1 0.1796 (3) 0.28133 (16) 0.4651 (3) 0.0722 (10)
O2 0.3020 (2) 0.28697 (12) 0.3156 (3) 0.0488 (7)
O3 0.1617 (2) 0.39172 (18) 0.2153 (3) 0.0758 (10)
C1 0.1816 (5) 0.1984 (2) 0.2981 (5) 0.0736 (15)
H1A 0.1179 0.1800 0.3354 0.110*
H1B 0.2442 0.1679 0.3100 0.110*
H1C 0.1592 0.2073 0.2010 0.110*
C2 0.2174 (4) 0.2594 (2) 0.3710 (5) 0.0539 (11)
C3 0.3430 (3) 0.34764 (17) 0.3725 (4) 0.0406 (9)
H3A 0.2813 0.3675 0.4151 0.049*
C4 0.3582 (3) 0.38888 (19) 0.2475 (4) 0.0423 (9)
C5 0.2436 (3) 0.4071 (2) 0.1659 (4) 0.0484 (10)
C6 0.2285 (3) 0.44157 (18) 0.0336 (4) 0.0418 (9)
C7 0.3135 (3) 0.46850 (19) −0.0303 (4) 0.0480 (10)
H7A 0.3894 0.4656 0.0125 0.058*
C8 0.2891 (3) 0.4989 (2) −0.1532 (4) 0.0496 (10)
H8A 0.3484 0.5168 −0.1939 0.060*
C9 0.1792 (3) 0.50414 (19) −0.2200 (4) 0.0432 (9)
C10 0.0950 (3) 0.47780 (18) −0.1548 (4) 0.0454 (10)
H10A 0.0189 0.4809 −0.1969 0.054*
C11 0.1194 (3) 0.44754 (19) −0.0316 (4) 0.0452 (10)
H11A 0.0599 0.4303 0.0099 0.054*
C12 0.1512 (3) 0.53706 (17) −0.3519 (4) 0.0435 (9)
C13 0.2239 (4) 0.5370 (2) −0.4479 (5) 0.0557 (12)
H13A 0.2932 0.5147 −0.4287 0.067*
C14 0.1977 (4) 0.5685 (2) −0.5701 (5) 0.0600 (12)
H14A 0.2495 0.5680 −0.6332 0.072*
C15 0.0983 (4) 0.6004 (2) −0.6020 (5) 0.0567 (11)
H15A 0.0810 0.6224 −0.6862 0.068*
C16 0.0235 (4) 0.6000 (2) −0.5100 (5) 0.0571 (12)
H16A −0.0467 0.6213 −0.5318 0.069*
C17 0.0496 (4) 0.5689 (2) −0.3860 (5) 0.0525 (11)
H17A −0.0027 0.5694 −0.3236 0.063*
C18 0.4403 (3) 0.33835 (17) 0.4820 (4) 0.0380 (9)
C19 0.5332 (3) 0.30086 (19) 0.4645 (4) 0.0485 (10)
H19A 0.5355 0.2805 0.3795 0.058*
C20 0.6214 (3) 0.29298 (19) 0.5683 (4) 0.0470 (10)
H20A 0.6844 0.2683 0.5526 0.056*
C21 0.6208 (3) 0.32024 (17) 0.6958 (4) 0.0392 (9)
C22 0.5258 (3) 0.35519 (19) 0.7145 (4) 0.0463 (10)
H22A 0.5208 0.3729 0.8014 0.056*
C23 0.4388 (3) 0.36451 (19) 0.6088 (4) 0.0453 (10)
H23A 0.3762 0.3897 0.6240 0.054*
C24 0.7180 (3) 0.31323 (18) 0.8042 (4) 0.0417 (9)
C25 0.7914 (4) 0.2617 (2) 0.8065 (5) 0.0554 (11)
H25A 0.7759 0.2287 0.7405 0.066*
C26 0.8855 (4) 0.2576 (2) 0.9022 (5) 0.0634 (13)
H26A 0.9348 0.2222 0.9007 0.076*
C27 0.9099 (4) 0.3037 (3) 0.9998 (5) 0.0687 (14)
H27A 0.9757 0.3007 1.0656 0.082*
C28 0.8380 (4) 0.3540 (2) 1.0011 (5) 0.0645 (13)
H28A 0.8529 0.3857 1.0701 0.077*
C29 0.7442 (4) 0.3597 (2) 0.9043 (5) 0.0527 (11)
H29A 0.6965 0.3959 0.9057 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0624 (3) 0.0713 (3) 0.0495 (3) 0.0171 (2) 0.0263 (2) 0.0032 (2)
Br2 0.0479 (3) 0.0544 (3) 0.0586 (3) −0.0059 (2) 0.0094 (2) −0.0019 (2)
O1 0.073 (2) 0.095 (2) 0.054 (2) −0.0222 (19) 0.0280 (18) −0.0089 (18)
O2 0.0503 (17) 0.0525 (16) 0.0455 (17) −0.0068 (13) 0.0136 (14) −0.0048 (13)
O3 0.0397 (17) 0.131 (3) 0.060 (2) 0.0013 (18) 0.0162 (16) 0.032 (2)
C1 0.091 (4) 0.069 (3) 0.060 (3) −0.025 (3) 0.011 (3) −0.001 (3)
C2 0.055 (3) 0.067 (3) 0.039 (3) −0.008 (2) 0.007 (2) 0.007 (2)
C3 0.038 (2) 0.045 (2) 0.040 (2) −0.0017 (18) 0.0107 (18) −0.0078 (18)
C4 0.036 (2) 0.056 (2) 0.036 (2) 0.0000 (18) 0.0115 (17) −0.0035 (18)
C5 0.039 (2) 0.065 (3) 0.043 (3) −0.001 (2) 0.0129 (19) −0.001 (2)
C6 0.038 (2) 0.047 (2) 0.042 (2) −0.0016 (18) 0.0113 (18) −0.0012 (18)
C7 0.032 (2) 0.061 (3) 0.051 (3) 0.0008 (19) 0.0057 (19) 0.006 (2)
C8 0.040 (2) 0.056 (3) 0.054 (3) −0.0046 (19) 0.012 (2) 0.006 (2)
C9 0.043 (2) 0.046 (2) 0.042 (2) −0.0016 (18) 0.0082 (18) −0.0010 (18)
C10 0.035 (2) 0.054 (2) 0.047 (3) −0.0046 (18) 0.0057 (19) −0.0062 (19)
C11 0.038 (2) 0.051 (2) 0.048 (3) −0.0071 (18) 0.0116 (19) −0.0028 (19)
C12 0.044 (2) 0.041 (2) 0.047 (3) 0.0001 (18) 0.0087 (19) 0.0019 (18)
C13 0.051 (3) 0.062 (3) 0.057 (3) 0.012 (2) 0.018 (2) 0.015 (2)
C14 0.063 (3) 0.064 (3) 0.058 (3) 0.000 (2) 0.022 (2) 0.014 (2)
C15 0.062 (3) 0.052 (3) 0.053 (3) −0.004 (2) 0.001 (2) 0.011 (2)
C16 0.051 (3) 0.053 (3) 0.064 (3) 0.008 (2) 0.000 (2) 0.006 (2)
C17 0.046 (3) 0.055 (3) 0.057 (3) 0.002 (2) 0.009 (2) −0.003 (2)
C18 0.036 (2) 0.045 (2) 0.033 (2) −0.0052 (17) 0.0063 (17) −0.0016 (16)
C19 0.055 (3) 0.055 (2) 0.037 (2) 0.006 (2) 0.010 (2) −0.0086 (19)
C20 0.043 (2) 0.052 (2) 0.047 (3) 0.0102 (19) 0.011 (2) −0.0024 (19)
C21 0.044 (2) 0.038 (2) 0.037 (2) −0.0034 (17) 0.0111 (18) 0.0016 (16)
C22 0.055 (3) 0.051 (2) 0.035 (2) 0.001 (2) 0.014 (2) −0.0062 (18)
C23 0.043 (2) 0.051 (2) 0.044 (3) 0.0053 (18) 0.014 (2) −0.0031 (19)
C24 0.045 (2) 0.041 (2) 0.039 (2) −0.0053 (18) 0.0082 (18) 0.0066 (17)
C25 0.066 (3) 0.050 (2) 0.050 (3) 0.004 (2) 0.007 (2) 0.001 (2)
C26 0.056 (3) 0.070 (3) 0.063 (3) 0.012 (2) 0.004 (3) 0.017 (3)
C27 0.064 (3) 0.080 (4) 0.058 (3) −0.006 (3) −0.004 (3) 0.016 (3)
C28 0.071 (3) 0.064 (3) 0.054 (3) −0.013 (3) −0.005 (3) −0.005 (2)
C29 0.056 (3) 0.052 (2) 0.049 (3) −0.003 (2) 0.003 (2) −0.002 (2)

Geometric parameters (Å, °)

Br1—C4 1.949 (3) C14—C15 1.364 (6)
Br2—C4 1.953 (4) C14—H14A 0.9500
O1—C2 1.192 (5) C15—C16 1.379 (6)
O2—C2 1.359 (5) C15—H15A 0.9500
O2—C3 1.441 (4) C16—C17 1.386 (6)
O3—C5 1.211 (4) C16—H16A 0.9500
C1—C2 1.493 (6) C17—H17A 0.9500
C1—H1A 0.9800 C18—C23 1.377 (5)
C1—H1B 0.9800 C18—C19 1.398 (5)
C1—H1C 0.9800 C19—C20 1.374 (6)
C3—C18 1.487 (5) C19—H19A 0.9500
C3—C4 1.545 (5) C20—C21 1.391 (5)
C3—H3A 1.0000 C20—H20A 0.9500
C4—C5 1.539 (6) C21—C22 1.393 (5)
C5—C6 1.486 (6) C21—C24 1.473 (6)
C6—C11 1.381 (5) C22—C23 1.381 (6)
C6—C7 1.402 (5) C22—H22A 0.9500
C7—C8 1.369 (6) C23—H23A 0.9500
C7—H7A 0.9500 C24—C25 1.389 (6)
C8—C9 1.392 (6) C24—C29 1.391 (6)
C8—H8A 0.9500 C25—C26 1.368 (6)
C9—C10 1.398 (5) C25—H25A 0.9500
C9—C12 1.474 (6) C26—C27 1.365 (7)
C10—C11 1.370 (6) C26—H26A 0.9500
C10—H10A 0.9500 C27—C28 1.362 (7)
C11—H11A 0.9500 C27—H27A 0.9500
C12—C17 1.389 (6) C28—C29 1.374 (6)
C12—C13 1.390 (5) C28—H28A 0.9500
C13—C14 1.375 (6) C29—H29A 0.9500
C13—H13A 0.9500
C2—O2—C3 116.5 (3) C15—C14—C13 120.9 (4)
C2—C1—H1A 109.5 C15—C14—H14A 119.5
C2—C1—H1B 109.5 C13—C14—H14A 119.5
H1A—C1—H1B 109.5 C14—C15—C16 118.8 (4)
C2—C1—H1C 109.5 C14—C15—H15A 120.6
H1A—C1—H1C 109.5 C16—C15—H15A 120.6
H1B—C1—H1C 109.5 C15—C16—C17 120.7 (4)
O1—C2—O2 123.7 (4) C15—C16—H16A 119.7
O1—C2—C1 126.3 (4) C17—C16—H16A 119.7
O2—C2—C1 110.0 (4) C16—C17—C12 120.9 (4)
O2—C3—C18 111.0 (3) C16—C17—H17A 119.6
O2—C3—C4 104.4 (3) C12—C17—H17A 119.6
C18—C3—C4 119.0 (3) C23—C18—C19 117.2 (4)
O2—C3—H3A 107.3 C23—C18—C3 120.1 (3)
C18—C3—H3A 107.3 C19—C18—C3 122.6 (3)
C4—C3—H3A 107.3 C20—C19—C18 121.0 (4)
C5—C4—C3 110.8 (3) C20—C19—H19A 119.5
C5—C4—Br1 110.4 (3) C18—C19—H19A 119.5
C3—C4—Br1 111.0 (3) C19—C20—C21 121.7 (4)
C5—C4—Br2 106.2 (3) C19—C20—H20A 119.1
C3—C4—Br2 107.7 (3) C21—C20—H20A 119.1
Br1—C4—Br2 110.53 (17) C20—C21—C22 117.0 (4)
O3—C5—C6 119.3 (4) C20—C21—C24 120.9 (3)
O3—C5—C4 116.2 (4) C22—C21—C24 122.1 (4)
C6—C5—C4 124.5 (3) C23—C22—C21 121.1 (4)
C11—C6—C7 117.4 (4) C23—C22—H22A 119.5
C11—C6—C5 116.0 (3) C21—C22—H22A 119.5
C7—C6—C5 126.6 (4) C18—C23—C22 121.9 (4)
C8—C7—C6 121.2 (4) C18—C23—H23A 119.1
C8—C7—H7A 119.4 C22—C23—H23A 119.1
C6—C7—H7A 119.4 C25—C24—C29 116.9 (4)
C7—C8—C9 121.5 (4) C25—C24—C21 121.4 (4)
C7—C8—H8A 119.3 C29—C24—C21 121.6 (4)
C9—C8—H8A 119.3 C26—C25—C24 121.2 (4)
C8—C9—C10 116.9 (4) C26—C25—H25A 119.4
C8—C9—C12 122.3 (3) C24—C25—H25A 119.4
C10—C9—C12 120.8 (4) C27—C26—C25 121.2 (5)
C11—C10—C9 121.6 (4) C27—C26—H26A 119.4
C11—C10—H10A 119.2 C25—C26—H26A 119.4
C9—C10—H10A 119.2 C28—C27—C26 118.7 (5)
C10—C11—C6 121.4 (4) C28—C27—H27A 120.7
C10—C11—H11A 119.3 C26—C27—H27A 120.7
C6—C11—H11A 119.3 C27—C28—C29 121.1 (5)
C17—C12—C13 117.1 (4) C27—C28—H28A 119.5
C17—C12—C9 120.9 (4) C29—C28—H28A 119.5
C13—C12—C9 121.9 (4) C28—C29—C24 121.0 (4)
C14—C13—C12 121.5 (4) C28—C29—H29A 119.5
C14—C13—H13A 119.2 C24—C29—H29A 119.5
C12—C13—H13A 119.2
C3—O2—C2—O1 −2.8 (6) C17—C12—C13—C14 1.6 (7)
C3—O2—C2—C1 177.9 (4) C9—C12—C13—C14 −179.2 (4)
C2—O2—C3—C18 93.1 (4) C12—C13—C14—C15 −0.8 (7)
C2—O2—C3—C4 −137.5 (3) C13—C14—C15—C16 −0.7 (7)
O2—C3—C4—C5 70.3 (4) C14—C15—C16—C17 1.3 (7)
C18—C3—C4—C5 −165.3 (3) C15—C16—C17—C12 −0.4 (7)
O2—C3—C4—Br1 −52.7 (3) C13—C12—C17—C16 −1.0 (6)
C18—C3—C4—Br1 71.7 (4) C9—C12—C17—C16 179.8 (4)
O2—C3—C4—Br2 −173.9 (2) O2—C3—C18—C23 −126.1 (4)
C18—C3—C4—Br2 −49.5 (4) C4—C3—C18—C23 112.8 (4)
C3—C4—C5—O3 5.7 (5) O2—C3—C18—C19 50.6 (5)
Br1—C4—C5—O3 129.2 (4) C4—C3—C18—C19 −70.5 (5)
Br2—C4—C5—O3 −111.0 (4) C23—C18—C19—C20 −2.8 (6)
C3—C4—C5—C6 −174.3 (3) C3—C18—C19—C20 −179.5 (4)
Br1—C4—C5—C6 −50.9 (5) C18—C19—C20—C21 1.9 (6)
Br2—C4—C5—C6 69.0 (4) C19—C20—C21—C22 1.0 (6)
O3—C5—C6—C11 −6.8 (6) C19—C20—C21—C24 −177.7 (4)
C4—C5—C6—C11 173.2 (4) C20—C21—C22—C23 −2.8 (6)
O3—C5—C6—C7 172.9 (4) C24—C21—C22—C23 175.8 (4)
C4—C5—C6—C7 −7.1 (6) C19—C18—C23—C22 0.9 (6)
C11—C6—C7—C8 −0.7 (6) C3—C18—C23—C22 177.8 (4)
C5—C6—C7—C8 179.6 (4) C21—C22—C23—C18 1.9 (6)
C6—C7—C8—C9 −0.3 (6) C20—C21—C24—C25 −25.7 (5)
C7—C8—C9—C10 1.0 (6) C22—C21—C24—C25 155.7 (4)
C7—C8—C9—C12 179.6 (4) C20—C21—C24—C29 150.5 (4)
C8—C9—C10—C11 −0.7 (6) C22—C21—C24—C29 −28.1 (5)
C12—C9—C10—C11 −179.4 (4) C29—C24—C25—C26 −0.8 (6)
C9—C10—C11—C6 −0.2 (6) C21—C24—C25—C26 175.6 (4)
C7—C6—C11—C10 0.9 (6) C24—C25—C26—C27 0.9 (7)
C5—C6—C11—C10 −179.4 (4) C25—C26—C27—C28 0.4 (7)
C8—C9—C12—C17 −148.5 (4) C26—C27—C28—C29 −1.8 (7)
C10—C9—C12—C17 30.1 (6) C27—C28—C29—C24 1.9 (7)
C8—C9—C12—C13 32.3 (6) C25—C24—C29—C28 −0.6 (6)
C10—C9—C12—C13 −149.1 (4) C21—C24—C29—C28 −177.0 (4)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C24–C29 ring.
D—H···A D—H H···A D···A D—H···A
C1—H1C···O1i 0.98 2.41 3.336 (6) 158
C17—H17A···O3ii 0.95 2.47 3.369 (5) 158
C20—H20A···Cg4iii 0.95 2.82 3.707 (4) 157

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y+1, −z; (iii) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5043).

References

  1. Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4308–o4309.
  2. Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.
  3. Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2018. [DOI] [PMC free article] [PubMed]
  4. Narayana, B., Mayekar, A. N., Yathirajan, H. S., Sarojini, B. K. & Kubicki, M. (2007). Acta Cryst. E63, o4362.
  5. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  6. Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der Pharm. Chem. 3, 232–240.
  7. Sarojini, B. K., Narayana, B., Yathirajan, H. S., Mayekar, A. N. & Bolte, M. (2007). Acta Cryst. E63, o3755.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96.
  10. Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.
  11. Yathirajan, H. S., Mayekar, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2345.
  12. Zhao, B., Lu, W. Q., Zhou, Z. H. & Wu, Y. (2002). J. Mater. Chem. 10, 1513–1517.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811056169/tk5043sup1.cif

e-68-0o362-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056169/tk5043Isup2.hkl

e-68-0o362-Isup2.hkl (287.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811056169/tk5043Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES