Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):o366. doi: 10.1107/S1600536812000505

(2E)-1-(3,4-Dichloro­phen­yl)-3-(2-hy­droxy­phen­yl)prop-2-en-1-one

Jerry P Jasinski a,*, James A Golen a, Prakash S Nayak b, B Narayana b, H S Yathirajan c
PMCID: PMC3275046  PMID: 22346991

Abstract

In the title compound, C15H10Cl2O2, the dihedral angle between the mean planes of the two benzene rings is 7.7 (6)°. The crystal packing is influenced by O—H⋯O hydrogen bonds, which form chains along [010]. Weak π–π stacking inter­actions [centroid–centroid distance = 3.6697 (13) Å] are observed, which may contribute to the crystal packing stability.

Related literature

For the pharmacological activity of chalcones, see: Bandgar et al. (2010); Cheng et al. (2008); Dhar (1981); Dimmock et al. (1999); Nowakowska (2007). For the synthesis of chalcone derivatives, see: Samshuddin et al. (2010; 2011); Fun et al. (2010); Jasinski et al. (2010); Baktır et al. (2011). For related structures, see: Fun et al. (2011); Jasinski et al. (2011).graphic file with name e-68-0o366-scheme1.jpg

Experimental

Crystal data

  • C15H10Cl2O2

  • M r = 293.13

  • Triclinic, Inline graphic

  • a = 7.2551 (6) Å

  • b = 7.8351 (7) Å

  • c = 12.8049 (11) Å

  • α = 92.367 (7)°

  • β = 102.946 (8)°

  • γ = 109.011 (8)°

  • V = 665.51 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 173 K

  • 0.34 × 0.15 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.854, T max = 0.972

  • 5430 measured reflections

  • 3174 independent reflections

  • 2417 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.115

  • S = 1.01

  • 3174 reflections

  • 175 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000505/vm2148sup1.cif

e-68-0o366-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000505/vm2148Isup2.hkl

e-68-0o366-Isup2.hkl (155.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000505/vm2148Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.84 (2) 1.88 (2) 2.7168 (17) 176 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

PSN thanks Mangalore University for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Chalcones are abundant in edible plants and considered as the precursors of flavonoids and isoflavonoids. They have also been shown to display a diverse array of pharmacological activities (Dhar, 1981; Nowakowska, 2007) including anti-infective, anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor, anticancer and mutagenic properties (Dimmock et al., 1999; Cheng et al., 2008; Bandgar et al., 2010). The basic skeleton of chalcones which possess an α,β-unsaturated carbonyl group is a useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, isoxazoline, 2,4,6-triaryl pyridine, benzodiazepine and cyclohexenone derivatives (Samshuddin et al., 2010; 2011; Fun et al., 2010; Jasinski et al., 2010; Baktır et al., 2011). The crystal structures of some chalcones, viz., (2E)-3-[3-(benzyloxy)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one (Fun et al., 2011), (2E)-3-(4-chlorophenyl)-1-(4-hydroxyphenyl) prop-2-en-1-one (Jasinski et al., 2011), have been reported. In continuation of our studies on chalcones and their derivatives, the title compound (I) was prepared and its crystal structure is reported.

In the title compound, C15H10Cl2O2, the dihedral angle between the mean planes of the two benzene rings is 7.7 (6)° (Fig. 1). O—H···O hydrogen bonds (Table 1) are observed between the hydroxyl hydrogen and propene oxygen atoms forming 1-D polymeric chains along [010]. In addition, weak π–π stacking interactions (Cg1···Cg2 distance of 3.6697 (13) Å; Cg1 and Cg2 are the centroids of the C1–C5 ring and C10–C15 ring, respectively) are observed which may contribute to crystal packing stability.

Experimental

To a mixture of 2-hydroxybenzaldehyde (1.22 g, 0.01 mol) and 3,4-dichloroacetophenone (1.89 g, 0.01 mol) in ethanol (40 ml), 10 ml of 10% sodium hydroxide solution was added and stirred at 278–288 K for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by the slow evaporation method. The yield of the compound was 86%. (M.P.: 392 K).

Refinement

The H2O atom was located by a difference map and refined isotropically with DFIX = 0.85 (2) Å. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å. Isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the a axis. Dashed lines indicate O—H···O hydrogen bonding. The remaining hydrogen atoms have been omitted for clarity.

Crystal data

C15H10Cl2O2 Z = 2
Mr = 293.13 F(000) = 300
Triclinic, P1 Dx = 1.463 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2551 (6) Å Cell parameters from 1666 reflections
b = 7.8351 (7) Å θ = 3.1–30.0°
c = 12.8049 (11) Å µ = 0.48 mm1
α = 92.367 (7)° T = 173 K
β = 102.946 (8)° Plate, pale yellow
γ = 109.011 (8)° 0.34 × 0.15 × 0.06 mm
V = 665.51 (10) Å3

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 3174 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2417 reflections with I > 2σ(I)
graphite Rint = 0.018
Detector resolution: 16.1500 pixels mm-1 θmax = 27.9°, θmin = 3.3°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −9→10
Tmin = 0.854, Tmax = 0.972 l = −16→16
5430 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.1793P] where P = (Fo2 + 2Fc2)/3
3174 reflections (Δ/σ)max < 0.001
175 parameters Δρmax = 0.30 e Å3
1 restraint Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.23632 (10) 1.23387 (8) 0.22164 (5) 0.0692 (2)
Cl2 0.34479 (10) 0.94069 (9) 0.09406 (4) 0.0681 (2)
O1 0.2056 (2) 0.98170 (17) 0.58884 (10) 0.0528 (4)
O2 0.2367 (2) 0.33480 (17) 0.62755 (10) 0.0467 (3)
H2O 0.232 (3) 0.227 (2) 0.6153 (17) 0.056*
C1 0.2381 (3) 1.0221 (2) 0.38083 (14) 0.0390 (4)
H1A 0.2107 1.1106 0.4190 0.047*
C2 0.2633 (3) 1.0443 (2) 0.27863 (15) 0.0419 (4)
C3 0.3060 (3) 0.9139 (3) 0.22129 (14) 0.0432 (4)
C4 0.3205 (3) 0.7606 (3) 0.26707 (15) 0.0459 (4)
H4A 0.3489 0.6729 0.2288 0.055*
C5 0.2930 (3) 0.7374 (2) 0.36929 (14) 0.0410 (4)
H5A 0.3012 0.6332 0.3992 0.049*
C6 0.2531 (3) 0.8688 (2) 0.42820 (13) 0.0344 (3)
C7 0.2250 (3) 0.8537 (2) 0.53956 (14) 0.0363 (4)
C8 0.2227 (3) 0.6882 (2) 0.58971 (13) 0.0374 (4)
H8A 0.2293 0.5889 0.5503 0.045*
C9 0.2112 (3) 0.6809 (2) 0.69169 (14) 0.0386 (4)
H9A 0.1997 0.7842 0.7240 0.046*
C10 0.2133 (3) 0.5400 (2) 0.76114 (13) 0.0368 (4)
C11 0.2267 (3) 0.3713 (2) 0.73036 (13) 0.0360 (4)
C12 0.2295 (3) 0.2466 (3) 0.80426 (15) 0.0465 (4)
H12A 0.2381 0.1349 0.7833 0.056*
C13 0.2196 (4) 0.2864 (3) 0.90771 (16) 0.0578 (5)
H13A 0.2220 0.2019 0.9565 0.069*
C14 0.2061 (4) 0.4516 (3) 0.93985 (16) 0.0593 (6)
H14A 0.1996 0.4787 1.0100 0.071*
C15 0.2024 (3) 0.5748 (3) 0.86740 (15) 0.0506 (5)
H15A 0.1923 0.6853 0.8894 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1015 (5) 0.0632 (4) 0.0687 (4) 0.0485 (3) 0.0365 (3) 0.0383 (3)
Cl2 0.0983 (5) 0.0790 (4) 0.0432 (3) 0.0402 (4) 0.0328 (3) 0.0210 (3)
O1 0.0915 (11) 0.0354 (7) 0.0465 (7) 0.0342 (7) 0.0276 (7) 0.0082 (6)
O2 0.0787 (9) 0.0325 (6) 0.0424 (7) 0.0290 (7) 0.0265 (7) 0.0083 (5)
C1 0.0470 (10) 0.0319 (8) 0.0425 (9) 0.0168 (7) 0.0144 (8) 0.0071 (7)
C2 0.0458 (10) 0.0374 (9) 0.0463 (10) 0.0174 (8) 0.0124 (8) 0.0157 (8)
C3 0.0481 (10) 0.0473 (10) 0.0360 (9) 0.0161 (9) 0.0139 (8) 0.0095 (8)
C4 0.0577 (11) 0.0426 (10) 0.0434 (10) 0.0216 (9) 0.0186 (9) 0.0037 (8)
C5 0.0536 (11) 0.0330 (8) 0.0415 (9) 0.0189 (8) 0.0153 (8) 0.0072 (7)
C6 0.0388 (9) 0.0281 (8) 0.0370 (8) 0.0121 (7) 0.0098 (7) 0.0048 (6)
C7 0.0440 (9) 0.0277 (8) 0.0390 (9) 0.0139 (7) 0.0118 (7) 0.0038 (7)
C8 0.0511 (10) 0.0261 (8) 0.0384 (9) 0.0158 (7) 0.0142 (8) 0.0037 (7)
C9 0.0514 (10) 0.0286 (8) 0.0380 (9) 0.0162 (7) 0.0123 (8) 0.0010 (7)
C10 0.0446 (9) 0.0329 (8) 0.0338 (8) 0.0143 (7) 0.0102 (7) 0.0039 (7)
C11 0.0423 (9) 0.0323 (8) 0.0359 (8) 0.0145 (7) 0.0121 (7) 0.0050 (7)
C12 0.0612 (12) 0.0397 (9) 0.0470 (10) 0.0247 (9) 0.0177 (9) 0.0135 (8)
C13 0.0765 (14) 0.0579 (12) 0.0472 (11) 0.0302 (11) 0.0180 (10) 0.0249 (10)
C14 0.0867 (16) 0.0629 (13) 0.0332 (9) 0.0297 (12) 0.0182 (10) 0.0101 (9)
C15 0.0771 (14) 0.0440 (10) 0.0370 (9) 0.0270 (10) 0.0180 (9) 0.0025 (8)

Geometric parameters (Å, °)

Cl1—C2 1.7294 (17) C7—C8 1.467 (2)
Cl2—C3 1.7241 (18) C8—C9 1.330 (2)
O1—C7 1.226 (2) C8—H8A 0.9300
O2—C11 1.358 (2) C9—C10 1.448 (2)
O2—H2O 0.842 (16) C9—H9A 0.9300
C1—C2 1.372 (2) C10—C15 1.401 (2)
C1—C6 1.392 (2) C10—C11 1.404 (2)
C1—H1A 0.9300 C11—C12 1.390 (2)
C2—C3 1.388 (3) C12—C13 1.371 (3)
C3—C4 1.382 (3) C12—H12A 0.9300
C4—C5 1.378 (2) C13—C14 1.382 (3)
C4—H4A 0.9300 C13—H13A 0.9300
C5—C6 1.393 (2) C14—C15 1.369 (3)
C5—H5A 0.9300 C14—H14A 0.9300
C6—C7 1.489 (2) C15—H15A 0.9300
C11—O2—H2O 110.9 (15) C9—C8—H8A 120.1
C2—C1—C6 120.90 (16) C7—C8—H8A 120.1
C2—C1—H1A 119.6 C8—C9—C10 131.19 (15)
C6—C1—H1A 119.6 C8—C9—H9A 114.4
C1—C2—C3 120.06 (16) C10—C9—H9A 114.4
C1—C2—Cl1 119.25 (14) C15—C10—C11 117.39 (16)
C3—C2—Cl1 120.68 (14) C15—C10—C9 117.66 (15)
C4—C3—C2 119.71 (16) C11—C10—C9 124.96 (15)
C4—C3—Cl2 119.09 (14) O2—C11—C12 121.68 (15)
C2—C3—Cl2 121.19 (14) O2—C11—C10 118.26 (14)
C5—C4—C3 120.17 (16) C12—C11—C10 120.06 (15)
C5—C4—H4A 119.9 C13—C12—C11 120.70 (17)
C3—C4—H4A 119.9 C13—C12—H12A 119.7
C4—C5—C6 120.58 (16) C11—C12—H12A 119.7
C4—C5—H5A 119.7 C12—C13—C14 120.29 (18)
C6—C5—H5A 119.7 C12—C13—H13A 119.9
C1—C6—C5 118.56 (15) C14—C13—H13A 119.9
C1—C6—C7 118.09 (14) C15—C14—C13 119.36 (18)
C5—C6—C7 123.35 (14) C15—C14—H14A 120.3
O1—C7—C8 120.65 (15) C13—C14—H14A 120.3
O1—C7—C6 119.13 (14) C14—C15—C10 122.21 (18)
C8—C7—C6 120.22 (14) C14—C15—H15A 118.9
C9—C8—C7 119.71 (15) C10—C15—H15A 118.9
C6—C1—C2—C3 −0.6 (3) O1—C7—C8—C9 −3.9 (3)
C6—C1—C2—Cl1 178.20 (14) C6—C7—C8—C9 175.47 (17)
C1—C2—C3—C4 0.8 (3) C7—C8—C9—C10 −177.56 (18)
Cl1—C2—C3—C4 −177.92 (15) C8—C9—C10—C15 178.7 (2)
C1—C2—C3—Cl2 −178.34 (14) C8—C9—C10—C11 −0.9 (3)
Cl1—C2—C3—Cl2 2.9 (2) C15—C10—C11—O2 179.76 (17)
C2—C3—C4—C5 −0.1 (3) C9—C10—C11—O2 −0.6 (3)
Cl2—C3—C4—C5 179.07 (15) C15—C10—C11—C12 −0.2 (3)
C3—C4—C5—C6 −0.9 (3) C9—C10—C11—C12 179.39 (18)
C2—C1—C6—C5 −0.4 (3) O2—C11—C12—C13 179.89 (18)
C2—C1—C6—C7 179.74 (17) C10—C11—C12—C13 −0.1 (3)
C4—C5—C6—C1 1.1 (3) C11—C12—C13—C14 0.2 (3)
C4—C5—C6—C7 −179.04 (17) C12—C13—C14—C15 0.1 (4)
C1—C6—C7—O1 −5.7 (3) C13—C14—C15—C10 −0.5 (4)
C5—C6—C7—O1 174.48 (18) C11—C10—C15—C14 0.5 (3)
C1—C6—C7—C8 174.96 (16) C9—C10—C15—C14 −179.1 (2)
C5—C6—C7—C8 −4.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O1i 0.84 (2) 1.88 (2) 2.7168 (17) 176 (2)

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2148).

References

  1. Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1262–o1263. [DOI] [PMC free article] [PubMed]
  2. Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364–1370. [DOI] [PubMed]
  3. Cheng, J. H., Hung, C. F., Yang, S. C., Wang, J., Wond, S. J. & Lin, C. N. (2008). Bioorg. Med. Chem. 16, 7270–7276. [DOI] [PubMed]
  4. Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds New York: John Wiley.
  5. Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149. [PubMed]
  6. Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o1313–o1314. [DOI] [PMC free article] [PubMed]
  8. Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Sarojini, B. K. & Musthafa Khaleel, V. (2011). Acta Cryst. E67, o756. [DOI] [PMC free article] [PubMed]
  9. Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949. [DOI] [PMC free article] [PubMed]
  10. Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137. [DOI] [PubMed]
  11. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  12. Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der Pharma Chem., 3, 232–240.
  13. Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000505/vm2148sup1.cif

e-68-0o366-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000505/vm2148Isup2.hkl

e-68-0o366-Isup2.hkl (155.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000505/vm2148Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES