Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 14;68(Pt 2):o377. doi: 10.1107/S160053681200030X

4-Meth­oxy-3-(trifluoro­meth­yl)aniline

Jian-Ling He a,*
PMCID: PMC3275055  PMID: 22347000

Abstract

In title compound, C8H8F3NO, the meth­oxy group is inclined at 8.7 (4)° to the benzene ring plane. The crystal structure is stabilized by inter­molecular N—H⋯F, N—H⋯N and C—H⋯F hydrogen-bonding inter­actions.

Related literature

The title compound is an inter­mediate in the synthesis of trifluoro­methyl-containing phthalic acid diamides, which are effective pesticides. For the preparation, see: Feng & Li (2010). For the crystal structure of a closely related compound, see: Crampton et al. (2006).graphic file with name e-68-0o377-scheme1.jpg

Experimental

Crystal data

  • C8H8F3NO

  • M r = 191.15

  • Orthorhombic, Inline graphic

  • a = 5.4140 (11) Å

  • b = 14.880 (3) Å

  • c = 21.304 (4) Å

  • V = 1716.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.986, T max = 0.986

  • 1722 measured reflections

  • 1722 independent reflections

  • 1389 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.162

  • S = 1.13

  • 1722 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200030X/pv2499sup1.cif

e-68-0o377-sup1.cif (13.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200030X/pv2499Isup2.hkl

e-68-0o377-Isup2.hkl (84.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200030X/pv2499Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯F2i 0.96 2.52 3.292 (3) 138
N—H0A⋯F1ii 0.86 2.44 3.242 (2) 155
N—H0B⋯Niii 0.86 2.47 3.245 (3) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The author thanks the Center of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

The tittle compound (Fig. 1) is used as an important intermediate in the synthesis of trifluoromethyl-containing phthalic acid compounds which are recognized as effective pesticides (Feng & Li, 2010). In the title molecule, the N, O and C8 atoms bonded to the central benzene ring (C2–C7) lie in its plane with methoxy group (O/C1) oriented at 8.7 (4) ° with respect to the benzene ring plane. There is an intramolecular interaction C6—H6A···F3 which stabilizes the molecular structure of the title compound. The crystal structure is stabilized by N—H0A···F1, N—H0B···N and C1—H1C···F2 intermolecular hydrogen bonding interactions. The bond distances and bond angles in the title compound agree with the corresponding bond distances and bond angles reported in a closely related compound (Crampton et al., 2006).

Experimental

The title compound was prepared by a method reported in the literature (Feng & Li, 2010)). A solution of 4-amino-2-(trifluoromethyl)phenol (2 g, 11.3 mmol) in dichloromethane (20 ml) was added slowly to a solution of sodium hydride (0.33 g, 13.6 nmol) in an ice bath. After stirring for 6 h iodomethane (4.8 g, 33.9 mmol) was added slowly in 1 h. After stirring for 48 h at room tempeature, the solvent was evaporated on a rotary evaporator yielding the title compound. Colorless blocks of the title compound were grown in ethanol (20 ml) by slow evaporation of the solvent at room temperature in about 7 days.

Refinement

The H atoms were positioned geometrically and constrained to ride on their parent atoms, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å for aryl and alky H-atoms, respectively, with Uiso(H) = xUeq(C/N), where x = 1.2 for aromatic and amino H, and x = 1.5 for aryl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound showing hydrogen bonds dashed lines.

Crystal data

C8H8F3NO F(000) = 784
Mr = 191.15 Dx = 1.480 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 25 reflections
a = 5.4140 (11) Å θ = 3.3–20.0°
b = 14.880 (3) Å µ = 0.14 mm1
c = 21.304 (4) Å T = 293 K
V = 1716.3 (6) Å3 Prism, colorless
Z = 8 0.10 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1722 independent reflections
Radiation source: fine-focus sealed tube 1389 reflections with I > 2σ(I)
graphite Rint = 0.0000
Detector resolution: 28.5714 pixels mm-1 θmax = 26.4°, θmin = 3.3°
ω/2θ scans h = 0→6
Absorption correction: ψ scan (North et al., 1968) k = 0→18
Tmin = 0.986, Tmax = 0.986 l = 0→26
1722 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.074P)2 + 0.3348P] where P = (Fo2 + 2Fc2)/3
1722 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N 0.0910 (3) 0.09833 (11) 0.20799 (9) 0.0642 (5)
H0A 0.1826 0.0524 0.2003 0.077*
H0B 0.0020 0.0998 0.2414 0.077*
F3 −0.3126 (4) 0.39455 (11) 0.21116 (7) 0.1021 (6)
F2 −0.3656 (3) 0.42452 (10) 0.11387 (8) 0.0906 (5)
C7 −0.0486 (4) 0.32133 (13) 0.13969 (9) 0.0548 (5)
F1 −0.0537 (3) 0.47609 (9) 0.16277 (8) 0.0924 (6)
O 0.0805 (4) 0.39518 (12) 0.04733 (8) 0.0872 (6)
C6 −0.0515 (4) 0.24725 (13) 0.17919 (10) 0.0550 (5)
H6A −0.1479 0.2487 0.2153 0.066*
C5 0.0868 (4) 0.17085 (13) 0.16592 (9) 0.0557 (5)
C8 −0.1937 (4) 0.40274 (15) 0.15659 (10) 0.0643 (6)
C2 0.0907 (4) 0.32022 (15) 0.08453 (10) 0.0653 (6)
C4 0.2268 (5) 0.17158 (16) 0.11146 (11) 0.0719 (7)
H4A 0.3216 0.1214 0.1016 0.086*
C3 0.2297 (5) 0.24452 (18) 0.07140 (11) 0.0767 (7)
H3A 0.3260 0.2427 0.0353 0.092*
C1 0.2463 (6) 0.4017 (2) −0.00398 (11) 0.0865 (8)
H1A 0.2177 0.4570 −0.0260 0.130*
H1B 0.2203 0.3520 −0.0319 0.130*
H1C 0.4131 0.4005 0.0113 0.130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.0752 (12) 0.0474 (10) 0.0699 (11) 0.0025 (8) 0.0031 (9) 0.0081 (8)
F3 0.1383 (15) 0.0767 (10) 0.0912 (11) 0.0339 (10) 0.0413 (10) 0.0151 (8)
F2 0.0887 (10) 0.0811 (11) 0.1018 (11) 0.0177 (8) −0.0227 (9) 0.0065 (8)
C7 0.0605 (11) 0.0477 (11) 0.0562 (11) −0.0037 (9) −0.0035 (10) 0.0018 (8)
F1 0.1106 (12) 0.0541 (8) 0.1124 (12) −0.0104 (8) −0.0073 (9) −0.0123 (7)
O 0.1094 (14) 0.0758 (11) 0.0763 (11) 0.0142 (10) 0.0150 (10) 0.0304 (9)
C6 0.0620 (12) 0.0492 (11) 0.0539 (11) −0.0033 (9) 0.0009 (10) 0.0014 (8)
C5 0.0625 (12) 0.0482 (11) 0.0563 (11) −0.0046 (9) −0.0058 (10) 0.0021 (8)
C8 0.0757 (15) 0.0539 (12) 0.0632 (12) 0.0042 (10) 0.0003 (11) 0.0069 (10)
C2 0.0782 (14) 0.0604 (13) 0.0572 (12) 0.0005 (11) 0.0006 (11) 0.0119 (10)
C4 0.0852 (16) 0.0629 (14) 0.0674 (13) 0.0141 (12) 0.0126 (13) 0.0032 (10)
C3 0.0922 (17) 0.0765 (16) 0.0614 (13) 0.0136 (13) 0.0179 (13) 0.0116 (11)
C1 0.0955 (18) 0.0942 (19) 0.0697 (15) −0.0139 (15) 0.0077 (15) 0.0258 (14)

Geometric parameters (Å, °)

N—C5 1.403 (3) C6—C5 1.390 (3)
N—H0A 0.8600 C6—H6A 0.9300
N—H0B 0.8600 C5—C4 1.386 (3)
F3—C8 1.335 (3) C2—C3 1.383 (3)
F2—C8 1.342 (3) C4—C3 1.381 (3)
C7—C6 1.387 (3) C4—H4A 0.9300
C7—C2 1.396 (3) C3—H3A 0.9300
C7—C8 1.488 (3) C1—H1A 0.9600
F1—C8 1.335 (3) C1—H1B 0.9600
O—C2 1.369 (3) C1—H1C 0.9600
O—C1 1.418 (3)
C5—N—H0A 120.0 F1—C8—C7 112.9 (2)
C5—N—H0B 120.0 F2—C8—C7 113.50 (19)
H0A—N—H0B 120.0 O—C2—C3 124.6 (2)
C6—C7—C2 120.48 (19) O—C2—C7 117.1 (2)
C6—C7—C8 119.62 (19) C3—C2—C7 118.27 (19)
C2—C7—C8 119.89 (18) C3—C4—C5 122.0 (2)
C2—O—C1 118.4 (2) C3—C4—H4A 119.0
C7—C6—C5 121.37 (19) C5—C4—H4A 119.0
C7—C6—H6A 119.3 C4—C3—C2 120.6 (2)
C5—C6—H6A 119.3 C4—C3—H3A 119.7
C4—C5—C6 117.27 (18) C2—C3—H3A 119.7
C4—C5—N 122.13 (19) O—C1—H1A 109.5
C6—C5—N 120.53 (19) O—C1—H1B 109.5
F3—C8—F1 105.23 (19) H1A—C1—H1B 109.5
F3—C8—F2 106.14 (19) O—C1—H1C 109.5
F1—C8—F2 105.25 (18) H1A—C1—H1C 109.5
F3—C8—C7 113.03 (18) H1B—C1—H1C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1C···F2i 0.96 2.52 3.292 (3) 138
C6—H6A···F3 0.93 2.35 2.696 (3) 102
N—H0A···F1ii 0.86 2.44 3.242 (2) 155
N—H0B···Niii 0.86 2.47 3.245 (3) 150

Symmetry codes: (i) x+1, y, z; (ii) −x+1/2, y−1/2, z; (iii) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2499).

References

  1. Crampton, M. R., Emokpae, T. A., Isanbor, C., Batsanov, A. S., Howard, J. A. K. & Mondal, R. (2006). Eur. J. Org. Chem. pp. 1222–1230.
  2. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Feng, M. L. & Li, Y. F. (2010). J. Agric. Food Chem. 58, 10999–11006. [DOI] [PubMed]
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200030X/pv2499sup1.cif

e-68-0o377-sup1.cif (13.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200030X/pv2499Isup2.hkl

e-68-0o377-Isup2.hkl (84.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200030X/pv2499Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES