Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 14;68(Pt 2):o378. doi: 10.1107/S1600536811056170

2-(4-Chloro-N-{2-[(1H-pyrrol-2-yl)carbon­yloxy]eth­yl}anilino)ethyl 1H-pyrrole-2-carboxyl­ate

Ying Yan a, Guilong Zhang b, Zhenming Yin a,*
PMCID: PMC3275056  PMID: 22347001

Abstract

In the title mol­ecule, C20H20ClN3O4, both the pyrrole N—H groups adopt a syn conformation with respect to the carbonyl groups. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into layers parallel to (102).

Related literature

For the crystal structures of related pyrrole-2-carboxyl­ate derivatives, see: Sessler et al. (2003); Yin & Li (2006); Maeda et al. (2007); Cui et al. (2009).graphic file with name e-68-0o378-scheme1.jpg

Experimental

Crystal data

  • C20H20ClN3O4

  • M r = 401.84

  • Monoclinic, Inline graphic

  • a = 19.972 (2) Å

  • b = 4.7426 (5) Å

  • c = 20.613 (2) Å

  • β = 95.815 (2)°

  • V = 1942.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.28 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.488, T max = 1.000

  • 9198 measured reflections

  • 3438 independent reflections

  • 1763 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.106

  • S = 1.01

  • 3438 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811056170/cv5220sup1.cif

e-68-0o378-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056170/cv5220Isup2.hkl

e-68-0o378-Isup2.hkl (168.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811056170/cv5220Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.07 2.893 (3) 160
N3—H3⋯O4ii 0.86 2.07 2.891 (3) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We sincerely thank the Natural Science Foundation of China for financial support from the (NSFC grant Nos. 21172174 and 20702038).

supplementary crystallographic information

Comment

The use of 2-carbonyl-functionalized pyrrole moieties as building blocks to create hydrogen bonded self-assembled aggregates has received some attention recently (Sessler et al., 2003; Yin et al. 2006; Maeda et al. 2007). In continuation of our study of the solid state self-assemblies of some pyrrole-2-carboxylate compounds (Cui et al. 2009), we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), both the pyrrole NH groups adopt syn conformation with respect to the carbonyl groups. The molecules of the title compound self-assemble into one-dimensional tape through helical N—H···O hydrogen bonds (Table 1). Further, intermolecular N—H···O hydrogen bonds (Table 1) link these tapes into layers parallel to (102) plane. The hydrogen bonding motif in the crystal of (I) is different from that reported for N,N-di[2- (1H-pyrrole-2-carbonyloxy)ethyl]-aniline (Cui et al., 2009). Apparently, the chloro group has great influence on the crystal packing.

Experimental

N,N-Di(2-hydroxyethyl)-4-chloroaniline (0.215 g), 2-(trichloroacetyl)-1H-pyrrole(0.59 g) and triethylamine (1 mL) were added to acetonitrile (15 ml), and the mixture was refluxed for 10 h. The solution was then evaporated under reduced pressure and the residue was purified by column chromatography on silica gel with ethyl acetate-petroleum ether (1:4 v/v), affording the title compound.

Refinement

All H atoms were geometrically positioned (N—H 0.86 Å, C—H 0.93-0.97 Å), and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C20H20ClN3O4 Dx = 1.374 Mg m3
Mr = 401.84 Melting point: 438 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 19.972 (2) Å Cell parameters from 1561 reflections
b = 4.7426 (5) Å θ = 2.7–21.7°
c = 20.613 (2) Å µ = 0.23 mm1
β = 95.815 (2)° T = 296 K
V = 1942.4 (4) Å3 Block, yellow
Z = 4 0.28 × 0.20 × 0.18 mm
F(000) = 840

Data collection

Bruker SMART CCD area-detector diffractometer 3438 independent reflections
Radiation source: fine-focus sealed tube 1763 reflections with I > 2σ(I)
graphite Rint = 0.046
phi and ω scans θmax = 25.0°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −23→23
Tmin = 0.488, Tmax = 1.000 k = −5→5
9198 measured reflections l = −24→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.5658P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
3438 reflections Δρmax = 0.15 e Å3
254 parameters Δρmin = −0.24 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0036 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.28670 (5) 0.3365 (2) 0.13385 (4) 0.0869 (4)
O1 0.42313 (10) 1.2588 (4) 0.50098 (10) 0.0631 (6)
O2 0.37700 (9) 0.9028 (4) 0.43966 (8) 0.0556 (6)
O3 0.06269 (9) 0.9926 (4) 0.41172 (8) 0.0526 (5)
O4 0.05353 (10) 1.1201 (5) 0.30620 (8) 0.0639 (6)
N1 0.51710 (12) 1.3321 (5) 0.40646 (11) 0.0548 (6)
H1 0.5250 1.4524 0.4375 0.066*
N2 0.23923 (11) 0.7752 (5) 0.39523 (11) 0.0527 (7)
N3 −0.05067 (11) 1.4950 (5) 0.33134 (10) 0.0529 (7)
H3 −0.0412 1.5110 0.2917 0.063*
C1 0.55231 (16) 1.3079 (7) 0.35432 (15) 0.0637 (9)
H1A 0.5892 1.4169 0.3462 0.076*
C2 0.52445 (16) 1.0957 (7) 0.31537 (15) 0.0642 (9)
H2 0.5388 1.0351 0.2761 0.077*
C3 0.47069 (15) 0.9876 (7) 0.34556 (14) 0.0561 (8)
H3A 0.4424 0.8414 0.3301 0.067*
C4 0.46687 (14) 1.1355 (6) 0.40230 (13) 0.0464 (7)
C5 0.42220 (14) 1.1110 (7) 0.45249 (14) 0.0472 (7)
C6 0.32809 (13) 0.8638 (7) 0.48606 (12) 0.0538 (8)
H6A 0.3082 1.0432 0.4961 0.065*
H6B 0.3494 0.7831 0.5262 0.065*
C7 0.27484 (14) 0.6671 (6) 0.45514 (13) 0.0541 (8)
H7A 0.2958 0.4891 0.4458 0.065*
H7B 0.2425 0.6301 0.4862 0.065*
C8 0.25169 (13) 0.6761 (6) 0.33371 (13) 0.0469 (7)
C9 0.30389 (14) 0.4884 (7) 0.32549 (14) 0.0570 (8)
H9 0.3324 0.4320 0.3616 0.068*
C10 0.31402 (15) 0.3851 (7) 0.26484 (16) 0.0645 (9)
H10 0.3481 0.2547 0.2607 0.077*
C11 0.27436 (16) 0.4726 (7) 0.21056 (14) 0.0575 (8)
C12 0.22420 (15) 0.6637 (7) 0.21674 (14) 0.0600 (9)
H12 0.1978 0.7265 0.1798 0.072*
C13 0.21230 (14) 0.7647 (7) 0.27770 (14) 0.0556 (8)
H13 0.1776 0.8930 0.2812 0.067*
C14 0.18334 (13) 0.9640 (6) 0.40279 (13) 0.0529 (8)
H14A 0.1808 1.1052 0.3686 0.063*
H14B 0.1910 1.0604 0.4444 0.063*
C15 0.11705 (13) 0.8046 (6) 0.39957 (14) 0.0530 (8)
H15A 0.1076 0.7194 0.3568 0.064*
H15B 0.1204 0.6548 0.4318 0.064*
C16 0.03441 (14) 1.1389 (6) 0.36010 (13) 0.0461 (7)
C17 −0.01934 (13) 1.3157 (6) 0.37684 (12) 0.0423 (7)
C18 −0.04881 (14) 1.3549 (6) 0.43337 (13) 0.0534 (8)
H18 −0.0375 1.2621 0.4727 0.064*
C19 −0.09868 (15) 1.5583 (7) 0.42135 (15) 0.0643 (9)
H19 −0.1270 1.6252 0.4510 0.077*
C20 −0.09841 (15) 1.6418 (7) 0.35789 (15) 0.0623 (9)
H20 −0.1265 1.7770 0.3368 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0873 (7) 0.1160 (8) 0.0615 (5) 0.0033 (6) 0.0274 (5) −0.0115 (5)
O1 0.0676 (14) 0.0668 (15) 0.0543 (12) −0.0081 (12) 0.0035 (10) −0.0143 (12)
O2 0.0497 (12) 0.0689 (15) 0.0488 (12) −0.0128 (12) 0.0084 (9) −0.0084 (11)
O3 0.0464 (12) 0.0692 (14) 0.0436 (11) 0.0102 (11) 0.0116 (9) 0.0052 (11)
O4 0.0646 (13) 0.0917 (17) 0.0371 (11) 0.0102 (13) 0.0130 (10) −0.0033 (11)
N1 0.0536 (15) 0.0539 (16) 0.0562 (15) −0.0041 (14) 0.0022 (12) −0.0013 (13)
N2 0.0418 (14) 0.0638 (18) 0.0517 (15) 0.0093 (13) 0.0004 (12) 0.0011 (13)
N3 0.0504 (15) 0.0690 (18) 0.0393 (13) −0.0003 (14) 0.0051 (12) 0.0025 (13)
C1 0.057 (2) 0.070 (2) 0.065 (2) −0.0030 (19) 0.0110 (17) 0.011 (2)
C2 0.066 (2) 0.073 (3) 0.0548 (19) 0.000 (2) 0.0137 (17) −0.0007 (19)
C3 0.056 (2) 0.060 (2) 0.0521 (18) −0.0013 (18) 0.0028 (15) 0.0004 (17)
C4 0.0407 (17) 0.048 (2) 0.0491 (18) −0.0010 (16) −0.0021 (14) 0.0025 (16)
C5 0.0410 (18) 0.050 (2) 0.0480 (18) 0.0039 (16) −0.0082 (14) 0.0029 (16)
C6 0.0490 (18) 0.069 (2) 0.0436 (17) −0.0018 (17) 0.0064 (14) 0.0031 (16)
C7 0.0493 (18) 0.060 (2) 0.0545 (18) −0.0017 (17) 0.0110 (15) 0.0118 (16)
C8 0.0389 (17) 0.051 (2) 0.0515 (18) −0.0034 (16) 0.0086 (14) 0.0023 (16)
C9 0.0475 (19) 0.068 (2) 0.0551 (19) 0.0104 (17) 0.0031 (15) 0.0016 (17)
C10 0.054 (2) 0.069 (2) 0.073 (2) 0.0122 (19) 0.0160 (17) 0.000 (2)
C11 0.054 (2) 0.068 (2) 0.0529 (19) −0.0033 (19) 0.0168 (16) 0.0008 (18)
C12 0.056 (2) 0.072 (2) 0.0517 (19) 0.0008 (19) 0.0040 (15) 0.0119 (18)
C13 0.0483 (18) 0.062 (2) 0.0566 (19) 0.0061 (16) 0.0055 (15) 0.0055 (17)
C14 0.0424 (18) 0.059 (2) 0.0574 (18) 0.0011 (17) 0.0052 (14) −0.0062 (16)
C15 0.0446 (18) 0.056 (2) 0.0594 (18) 0.0049 (17) 0.0116 (14) 0.0029 (16)
C16 0.0433 (17) 0.057 (2) 0.0384 (17) −0.0065 (16) 0.0047 (14) −0.0002 (16)
C17 0.0409 (16) 0.0530 (19) 0.0324 (14) 0.0004 (15) 0.0010 (12) 0.0011 (14)
C18 0.0558 (19) 0.065 (2) 0.0404 (16) 0.0045 (18) 0.0113 (14) 0.0016 (16)
C19 0.062 (2) 0.075 (3) 0.058 (2) 0.013 (2) 0.0159 (17) −0.0068 (18)
C20 0.053 (2) 0.065 (2) 0.067 (2) 0.0095 (18) 0.0005 (17) 0.0014 (19)

Geometric parameters (Å, °)

Cl1—C11 1.748 (3) C6—H6B 0.9700
O1—C5 1.219 (3) C7—H7A 0.9700
O2—C5 1.346 (3) C7—H7B 0.9700
O2—C6 1.447 (3) C8—C9 1.394 (4)
O3—C16 1.345 (3) C8—C13 1.395 (4)
O3—C15 1.446 (3) C9—C10 1.377 (4)
O4—C16 1.214 (3) C9—H9 0.9300
N1—C1 1.347 (3) C10—C11 1.368 (4)
N1—C4 1.366 (3) C10—H10 0.9300
N1—H1 0.8600 C11—C12 1.366 (4)
N2—C8 1.398 (3) C12—C13 1.387 (4)
N2—C14 1.452 (3) C12—H12 0.9300
N2—C7 1.455 (3) C13—H13 0.9300
N3—C20 1.341 (3) C14—C15 1.520 (4)
N3—C17 1.370 (3) C14—H14A 0.9700
N3—H3 0.8600 C14—H14B 0.9700
C1—C2 1.370 (4) C15—H15A 0.9700
C1—H1A 0.9300 C15—H15B 0.9700
C2—C3 1.392 (4) C16—C17 1.432 (4)
C2—H2 0.9300 C17—C18 1.370 (3)
C3—C4 1.372 (4) C18—C19 1.391 (4)
C3—H3A 0.9300 C18—H18 0.9300
C4—C5 1.438 (4) C19—C20 1.367 (4)
C6—C7 1.507 (4) C19—H19 0.9300
C6—H6A 0.9700 C20—H20 0.9300
C5—O2—C6 116.6 (2) C10—C9—H9 119.4
C16—O3—C15 116.3 (2) C8—C9—H9 119.4
C1—N1—C4 109.3 (3) C11—C10—C9 120.6 (3)
C1—N1—H1 125.3 C11—C10—H10 119.7
C4—N1—H1 125.3 C9—C10—H10 119.7
C8—N2—C14 120.9 (2) C12—C11—C10 119.6 (3)
C8—N2—C7 122.3 (2) C12—C11—Cl1 120.1 (2)
C14—N2—C7 116.2 (2) C10—C11—Cl1 120.3 (3)
C20—N3—C17 109.7 (2) C11—C12—C13 120.5 (3)
C20—N3—H3 125.1 C11—C12—H12 119.7
C17—N3—H3 125.1 C13—C12—H12 119.7
N1—C1—C2 108.4 (3) C12—C13—C8 120.8 (3)
N1—C1—H1A 125.8 C12—C13—H13 119.6
C2—C1—H1A 125.8 C8—C13—H13 119.6
C1—C2—C3 107.1 (3) N2—C14—C15 111.4 (2)
C1—C2—H2 126.4 N2—C14—H14A 109.4
C3—C2—H2 126.4 C15—C14—H14A 109.4
C4—C3—C2 107.7 (3) N2—C14—H14B 109.4
C4—C3—H3A 126.1 C15—C14—H14B 109.4
C2—C3—H3A 126.1 H14A—C14—H14B 108.0
N1—C4—C3 107.4 (3) O3—C15—C14 110.6 (2)
N1—C4—C5 121.0 (3) O3—C15—H15A 109.5
C3—C4—C5 131.6 (3) C14—C15—H15A 109.5
O1—C5—O2 122.5 (3) O3—C15—H15B 109.5
O1—C5—C4 125.7 (3) C14—C15—H15B 109.5
O2—C5—C4 111.8 (3) H15A—C15—H15B 108.1
O2—C6—C7 107.1 (2) O4—C16—O3 122.7 (3)
O2—C6—H6A 110.3 O4—C16—C17 125.2 (3)
C7—C6—H6A 110.3 O3—C16—C17 112.1 (2)
O2—C6—H6B 110.3 N3—C17—C18 107.0 (3)
C7—C6—H6B 110.3 N3—C17—C16 120.0 (2)
H6A—C6—H6B 108.5 C18—C17—C16 133.0 (3)
N2—C7—C6 113.8 (2) C17—C18—C19 107.7 (3)
N2—C7—H7A 108.8 C17—C18—H18 126.1
C6—C7—H7A 108.8 C19—C18—H18 126.1
N2—C7—H7B 108.8 C20—C19—C18 107.4 (3)
C6—C7—H7B 108.8 C20—C19—H19 126.3
H7A—C7—H7B 107.7 C18—C19—H19 126.3
C9—C8—C13 117.3 (3) N3—C20—C19 108.2 (3)
C9—C8—N2 121.9 (3) N3—C20—H20 125.9
C13—C8—N2 120.8 (3) C19—C20—H20 125.9
C10—C9—C8 121.2 (3)
C4—N1—C1—C2 0.6 (3) C9—C10—C11—C12 −0.2 (5)
N1—C1—C2—C3 −0.3 (3) C9—C10—C11—Cl1 −179.0 (2)
C1—C2—C3—C4 −0.1 (3) C10—C11—C12—C13 −1.4 (5)
C1—N1—C4—C3 −0.7 (3) Cl1—C11—C12—C13 177.5 (2)
C1—N1—C4—C5 178.8 (3) C11—C12—C13—C8 0.7 (5)
C2—C3—C4—N1 0.5 (3) C9—C8—C13—C12 1.4 (4)
C2—C3—C4—C5 −178.9 (3) N2—C8—C13—C12 −179.2 (3)
C6—O2—C5—O1 0.9 (4) C8—N2—C14—C15 78.5 (3)
C6—O2—C5—C4 −178.3 (2) C7—N2—C14—C15 −93.4 (3)
N1—C4—C5—O1 1.7 (4) C16—O3—C15—C14 84.3 (3)
C3—C4—C5—O1 −179.0 (3) N2—C14—C15—O3 176.0 (2)
N1—C4—C5—O2 −179.1 (2) C15—O3—C16—O4 −1.2 (4)
C3—C4—C5—O2 0.2 (4) C15—O3—C16—C17 179.2 (2)
C5—O2—C6—C7 168.1 (2) C20—N3—C17—C18 −0.2 (3)
C8—N2—C7—C6 104.4 (3) C20—N3—C17—C16 −179.1 (3)
C14—N2—C7—C6 −83.8 (3) O4—C16—C17—N3 −4.3 (4)
O2—C6—C7—N2 −61.2 (3) O3—C16—C17—N3 175.3 (2)
C14—N2—C8—C9 −178.2 (3) O4—C16—C17—C18 177.1 (3)
C7—N2—C8—C9 −6.8 (4) O3—C16—C17—C18 −3.3 (4)
C14—N2—C8—C13 2.5 (4) N3—C17—C18—C19 0.5 (3)
C7—N2—C8—C13 173.8 (3) C16—C17—C18—C19 179.2 (3)
C13—C8—C9—C10 −3.0 (4) C17—C18—C19—C20 −0.6 (4)
N2—C8—C9—C10 177.7 (3) C17—N3—C20—C19 −0.1 (3)
C8—C9—C10—C11 2.4 (5) C18—C19—C20—N3 0.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.07 2.893 (3) 160
N3—H3···O4ii 0.86 2.07 2.891 (3) 158

Symmetry codes: (i) −x+1, −y+3, −z+1; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5220).

References

  1. Bruker (1999). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cui, Y., Yin, Z., Dong, L. & He, J. (2009). J. Mol. Struct. 938, 322–327.
  3. Maeda, H., Kusunose, Y., Terasaki, M., Ito, Y., Fujimoto, C., Fujii, R. & Nakanishi, T. (2007). Chem. Asian J. 2, 350–357. [DOI] [PubMed]
  4. Sessler, J. L., Berthon-Gelloz, G., Gale, P. A., Camiolo, S., Anslyn, E. V., Anzenbacher, P. Jr, Furuta, H., Kirkovits, G. J., Lynch, V. M., Maeda, H., Morosini, P., Scherer, M., Shriver, J. & Zimmerman, R. S. (2003). Polyhedron, 22, 2963–2983.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Yin, Z. & Li, Z. (2006). Tetrahedron Lett. 47, 7875–7879.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811056170/cv5220sup1.cif

e-68-0o378-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811056170/cv5220Isup2.hkl

e-68-0o378-Isup2.hkl (168.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811056170/cv5220Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES