Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 14;68(Pt 2):o380. doi: 10.1107/S1600536812000311

2-[(E)-4-Diethyl­amino-2-hy­droxy­benzyl­idene]hydrazinecarboxamide

Hoong-Kun Fun a,*,, Chin Wei Ooi a, Shridhar Malladi b, Arun M Isloor b, Kammasandra N Shivananda c
PMCID: PMC3275058  PMID: 22347003

Abstract

Two mol­ecules make up the asymmetric unit of the title compound, C12H18N4O2, and both feature an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring. The diethyl­amino group of one of the mol­ecules is disordered over two sets of sites in a 0.59 (2):0.41 (2) ratio. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into sheets lying parallel to the ac plane and C—H⋯π inter­actions are also observed.

Related literature

For a related structure and background references to semicarbazides and semicarbazones, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987).graphic file with name e-68-0o380-scheme1.jpg

Experimental

Crystal data

  • C12H18N4O2

  • M r = 250.30

  • Triclinic, Inline graphic

  • a = 8.794 (2) Å

  • b = 12.532 (3) Å

  • c = 14.292 (5) Å

  • α = 112.911 (7)°

  • β = 96.033 (7)°

  • γ = 107.296 (5)°

  • V = 1340.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.35 × 0.12 × 0.03 mm

Data collection

  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.970, T max = 0.998

  • 15373 measured reflections

  • 4567 independent reflections

  • 2179 reflections with I > 2σ(I)

  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.220

  • S = 1.00

  • 4567 reflections

  • 378 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000311/hb6571sup1.cif

e-68-0o380-sup1.cif (28.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000311/hb6571Isup2.hkl

e-68-0o380-Isup2.hkl (223.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000311/hb6571Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1B–C6B benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1O1⋯N2A 0.87 1.79 2.608 (4) 157
O1B—H2O1⋯N2B 0.87 1.91 2.654 (5) 142
N3A—H1N3⋯O2Ai 0.95 1.90 2.832 (4) 168
N3B—H2N3⋯O2Bii 0.99 1.87 2.837 (4) 168
N4A—H1N4⋯O1B 0.79 2.40 3.077 (5) 144
N4A—H2N4⋯O2Biii 0.90 2.01 2.901 (5) 172
N4B—H3N4⋯O2Aiv 0.78 2.14 2.911 (5) 167
N4B—H4N4⋯O1A 0.89 2.20 2.962 (5) 144
C9A—H9ABCg1v 0.97 2.83 3.733 (19) 156
C10X—H10FCg1v 0.96 2.71 3.46 (3) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Government and USM for the award of the post of research assistant under the Research University Grant (1001/PFIZIK/811151). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

supplementary crystallographic information

Comment

As part of our ongoing studies of semicarbazides (Fun et al., 2011), we now describe the structure of the title compound, (I).

The asymmetric unit of (I) consists of two crystallographically independent molecules A and B as shown in Fig. 1. The diethylamino group (N1/C9–C12) in the molecule A is observed to be disordered over two positions with a site-occupancy ratio of 0.59 (2): 0.41 (2). The intramolecular O1A—H1O1···N2A and O1B—H2O1···N2B hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995) in both molecules. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011).

In the crystal (Fig. 2), N3A—H1N3···O2A, N3B—H2N3···O2B, N4B—H3N4···O2A, N4A—H2N4···O2B, N4A—H1N4···O1B and N4B—H4N4···O1A hydrogen bonds (Table 1) link the molecules into two-dimensional network parallel to the ac plane. The crystal structure is further consolidated by C—H···π interactions, involving the centroid of the benzene ring (C1B–C6B; Cg1; Table 1).

Experimental

Semicarbazide hydrochloride (0.86 g, 7.70 mmol) and freshly recrystallized sodium acetate (0.77 g, 9.40 mmol) were dissolved in water (10 ml). The reaction mixture was stirred at room temperature for 10 minutes. To this, N,N-diethylaminosalicylaldehyde (1.396 g, 7.23 mmol) was added and the mixture was shaken well. A little alcohol was added to dissolve the turbidity. The mixture was shaken for a further 10 minutes and allowed to stand. The title compound crystallizes out on standing for 6 h. The separated crystals were filtered, washed with cold water and recrystallized from ethanol. Yield: 1.4 g, 77.43%. M.p. 508–510 K.

Refinement

All N and O bound H atoms were located from the difference map and were fixed at their found positions with Uiso(H) = 1.2 Ueq(N) and 1.5 Ueq(O). [N–H = 0.7896–0.9855 Å and O–H = 0.8662 and 0.8740 Å]. The hydrogen atoms bounded to C atoms were positioned geometrically [C–H = 0.93, 0.96, and 0.97 Å] with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The diethylamino group in one molecule was modelled as disordered over two sets of sites in a 0.59 (2): 0.41 (2) ratio.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing two crystallographically independent molecules with 30% probability displacement ellipsoids. Intramolecular hydrogen bonds and minor component of disorder are shown as dashed line and open bonds, respectively.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing a two-dimensional network parallel to the ac plane. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C12H18N4O2 Z = 4
Mr = 250.30 F(000) = 536
Triclinic, P1 Dx = 1.240 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.794 (2) Å Cell parameters from 1473 reflections
b = 12.532 (3) Å θ = 2.5–21.7°
c = 14.292 (5) Å µ = 0.09 mm1
α = 112.911 (7)° T = 296 K
β = 96.033 (7)° Plate, colourless
γ = 107.296 (5)° 0.35 × 0.12 × 0.03 mm
V = 1340.8 (7) Å3

Data collection

Bruker APEX DUO CCD diffractometer 4567 independent reflections
Radiation source: fine-focus sealed tube 2179 reflections with I > 2σ(I)
graphite Rint = 0.082
φ and ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.970, Tmax = 0.998 k = −14→14
15373 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.1117P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
4567 reflections Δρmax = 0.37 e Å3
378 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.020 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1A 0.6655 (3) 0.1779 (3) 0.2307 (2) 0.0701 (8)
H1O1 0.5606 0.1487 0.2032 0.105*
O2A −0.0328 (3) −0.0381 (2) 0.10768 (18) 0.0570 (7)
N1A 1.139 (2) 0.3932 (17) 0.1487 (15) 0.071 (4) 0.59 (2)
C9A 1.2352 (15) 0.4443 (17) 0.2568 (12) 0.069 (4) 0.59 (2)
H9AA 1.1634 0.4606 0.3032 0.082* 0.59 (2)
H9AB 1.3202 0.5237 0.2735 0.082* 0.59 (2)
C10A 1.3145 (18) 0.3656 (12) 0.2799 (14) 0.091 (4) 0.59 (2)
H10A 1.3591 0.4007 0.3542 0.136* 0.59 (2)
H10B 1.4014 0.3617 0.2448 0.136* 0.59 (2)
H10C 1.2345 0.2830 0.2556 0.136* 0.59 (2)
C11A 1.2166 (18) 0.4446 (19) 0.0825 (13) 0.089 (5) 0.59 (2)
H11A 1.3022 0.5253 0.1271 0.107* 0.59 (2)
H11B 1.1350 0.4577 0.0415 0.107* 0.59 (2)
C12A 1.290 (2) 0.3647 (14) 0.0100 (13) 0.112 (5) 0.59 (2)
H12A 1.3312 0.4013 −0.0344 0.169* 0.59 (2)
H12B 1.2070 0.2833 −0.0325 0.169* 0.59 (2)
H12C 1.3780 0.3579 0.0499 0.169* 0.59 (2)
N1X 1.137 (4) 0.338 (2) 0.126 (3) 0.082 (7) 0.41 (2)
C9X 1.248 (2) 0.355 (2) 0.2198 (17) 0.082 (6) 0.41 (2)
H9XA 1.3568 0.3644 0.2079 0.098* 0.41 (2)
H9XB 1.2082 0.2828 0.2328 0.098* 0.41 (2)
C10X 1.258 (3) 0.469 (2) 0.313 (2) 0.102 (7) 0.41 (2)
H10D 1.3259 0.4764 0.3746 0.153* 0.41 (2)
H10E 1.1499 0.4616 0.3230 0.153* 0.41 (2)
H10F 1.3055 0.5414 0.3026 0.153* 0.41 (2)
C11X 1.230 (2) 0.372 (2) 0.0587 (18) 0.079 (6) 0.41 (2)
H11C 1.1754 0.3083 −0.0126 0.095* 0.41 (2)
H11D 1.3367 0.3662 0.0756 0.095* 0.41 (2)
C12X 1.262 (3) 0.496 (2) 0.0576 (17) 0.110 (7) 0.41 (2)
H12D 1.3144 0.4983 0.0024 0.166* 0.41 (2)
H12E 1.3331 0.5608 0.1238 0.166* 0.41 (2)
H12F 1.1600 0.5070 0.0460 0.166* 0.41 (2)
N2A 0.3762 (3) 0.1003 (3) 0.1066 (2) 0.0506 (8)
N3A 0.2069 (3) 0.0468 (3) 0.0751 (2) 0.0549 (8)
H1N3 0.1478 0.0326 0.0095 0.066*
N4A 0.2015 (4) 0.0214 (3) 0.2272 (3) 0.0679 (10)
H1N4 0.2962 0.0631 0.2488 0.081*
H2N4 0.1436 −0.0001 0.2695 0.081*
C1A 0.7295 (4) 0.2133 (3) 0.1602 (3) 0.0518 (10)
C2A 0.8972 (4) 0.2705 (4) 0.1830 (3) 0.0627 (11)
H2AA 0.9617 0.2838 0.2453 0.075*
C3A 0.9731 (5) 0.3092 (4) 0.1144 (3) 0.0661 (12)
C4A 0.8712 (5) 0.2833 (4) 0.0200 (3) 0.0695 (12)
H4AA 0.9174 0.3053 −0.0286 0.083*
C5A 0.7041 (5) 0.2256 (4) −0.0015 (3) 0.0612 (11)
H5AA 0.6401 0.2099 −0.0650 0.073*
C6A 0.6255 (4) 0.1896 (3) 0.0660 (3) 0.0456 (9)
C7A 0.4491 (4) 0.1316 (3) 0.0425 (3) 0.0512 (9)
H7AA 0.3859 0.1162 −0.0210 0.061*
C8A 0.1193 (5) 0.0088 (3) 0.1376 (3) 0.0509 (9)
O1B 0.5150 (3) 0.1937 (3) 0.4058 (2) 0.0696 (8)
H2O1 0.6021 0.1737 0.4043 0.104*
O2B 1.0082 (3) −0.0267 (2) 0.36887 (19) 0.0561 (7)
N1B 0.2108 (5) 0.3598 (4) 0.6416 (3) 0.0821 (12)
N2B 0.7297 (3) 0.1094 (3) 0.4683 (2) 0.0492 (8)
N3B 0.8512 (4) 0.0593 (3) 0.4610 (2) 0.0528 (8)
H2N3 0.8853 0.0467 0.5226 0.063*
N4B 0.8368 (4) 0.0353 (3) 0.2920 (3) 0.0699 (10)
H3N4 0.8593 0.0056 0.2389 0.084*
H4N4 0.7739 0.0806 0.3003 0.084*
C1B 0.4775 (4) 0.2152 (3) 0.4999 (3) 0.0496 (9)
C2B 0.3629 (5) 0.2704 (4) 0.5218 (3) 0.0606 (11)
H2BA 0.3142 0.2893 0.4723 0.073*
C3B 0.3186 (5) 0.2987 (4) 0.6184 (3) 0.0578 (10)
C4B 0.3893 (5) 0.2639 (4) 0.6874 (3) 0.0580 (11)
H4BA 0.3599 0.2783 0.7506 0.070*
C5B 0.5022 (5) 0.2086 (3) 0.6638 (3) 0.0525 (10)
H5BA 0.5465 0.1861 0.7120 0.063*
C6B 0.5538 (4) 0.1842 (3) 0.5718 (3) 0.0446 (9)
C7B 0.6773 (4) 0.1298 (3) 0.5521 (3) 0.0495 (9)
H7BA 0.7206 0.1086 0.6016 0.059*
C8B 0.9039 (5) 0.0206 (4) 0.3727 (3) 0.0517 (9)
C9B 0.1244 (7) 0.3852 (6) 0.5621 (5) 0.0962 (17)
H9BA 0.1035 0.3187 0.4926 0.115*
H9BB 0.0194 0.3879 0.5756 0.115*
C10B 0.2252 (8) 0.5042 (6) 0.5667 (5) 0.122 (2)
H10G 0.1741 0.5160 0.5106 0.183*
H10H 0.3325 0.5040 0.5598 0.183*
H10I 0.2352 0.5709 0.6328 0.183*
C11B 0.1968 (6) 0.4216 (5) 0.7525 (4) 0.0918 (16)
H11E 0.2921 0.4322 0.8009 0.110*
H11F 0.1945 0.5034 0.7675 0.110*
C12B 0.0490 (7) 0.3475 (5) 0.7673 (5) 0.1114 (19)
H12G 0.0302 0.3956 0.8329 0.167*
H12H 0.0618 0.2742 0.7679 0.167*
H12I −0.0430 0.3234 0.7111 0.167*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0498 (16) 0.119 (2) 0.0724 (19) 0.0315 (15) 0.0236 (14) 0.0708 (18)
O2A 0.0424 (15) 0.0861 (19) 0.0444 (15) 0.0184 (13) 0.0128 (12) 0.0342 (14)
N1A 0.043 (5) 0.092 (10) 0.066 (7) −0.007 (7) 0.010 (4) 0.048 (8)
C9A 0.051 (6) 0.079 (9) 0.055 (8) 0.006 (5) 0.003 (6) 0.026 (8)
C10A 0.096 (8) 0.096 (8) 0.080 (9) 0.049 (6) 0.010 (7) 0.031 (7)
C11A 0.062 (7) 0.101 (13) 0.099 (10) 0.017 (8) 0.020 (6) 0.050 (10)
C12A 0.099 (9) 0.158 (12) 0.109 (10) 0.059 (8) 0.049 (7) 0.074 (9)
N1X 0.061 (9) 0.095 (16) 0.098 (16) 0.012 (13) 0.022 (10) 0.062 (15)
C9X 0.052 (10) 0.095 (12) 0.078 (14) 0.009 (8) 0.019 (9) 0.031 (11)
C10X 0.100 (13) 0.088 (13) 0.086 (15) 0.003 (10) 0.009 (12) 0.033 (14)
C11X 0.056 (9) 0.117 (16) 0.087 (14) 0.027 (10) 0.041 (8) 0.065 (13)
C12X 0.115 (14) 0.092 (15) 0.096 (13) −0.002 (11) 0.008 (10) 0.050 (10)
N2A 0.0417 (17) 0.063 (2) 0.053 (2) 0.0194 (14) 0.0159 (15) 0.0309 (16)
N3A 0.0400 (17) 0.081 (2) 0.0468 (19) 0.0167 (15) 0.0135 (14) 0.0355 (17)
N4A 0.0446 (18) 0.109 (3) 0.057 (2) 0.0194 (18) 0.0134 (16) 0.050 (2)
C1A 0.049 (2) 0.069 (3) 0.058 (3) 0.0273 (19) 0.0218 (19) 0.042 (2)
C2A 0.044 (2) 0.094 (3) 0.064 (3) 0.022 (2) 0.014 (2) 0.051 (2)
C3A 0.044 (2) 0.095 (3) 0.068 (3) 0.017 (2) 0.019 (2) 0.050 (3)
C4A 0.059 (3) 0.091 (3) 0.062 (3) 0.017 (2) 0.025 (2) 0.042 (2)
C5A 0.054 (2) 0.084 (3) 0.047 (2) 0.016 (2) 0.0153 (19) 0.037 (2)
C6A 0.041 (2) 0.060 (2) 0.043 (2) 0.0175 (17) 0.0136 (16) 0.0292 (18)
C7A 0.053 (2) 0.066 (2) 0.040 (2) 0.0213 (19) 0.0141 (18) 0.0277 (19)
C8A 0.051 (2) 0.064 (2) 0.039 (2) 0.0183 (19) 0.0141 (18) 0.0258 (18)
O1B 0.0695 (18) 0.114 (2) 0.0463 (17) 0.0531 (17) 0.0241 (14) 0.0401 (16)
O2B 0.0627 (16) 0.0853 (19) 0.0542 (16) 0.0473 (15) 0.0307 (13) 0.0453 (14)
N1B 0.095 (3) 0.126 (3) 0.074 (3) 0.080 (3) 0.047 (2) 0.057 (2)
N2B 0.0505 (18) 0.065 (2) 0.0472 (19) 0.0304 (16) 0.0174 (15) 0.0310 (16)
N3B 0.0597 (19) 0.077 (2) 0.0467 (19) 0.0416 (17) 0.0217 (15) 0.0378 (16)
N4B 0.085 (2) 0.121 (3) 0.050 (2) 0.070 (2) 0.0355 (18) 0.055 (2)
C1B 0.047 (2) 0.067 (2) 0.037 (2) 0.0248 (19) 0.0114 (17) 0.0225 (19)
C2B 0.060 (2) 0.085 (3) 0.051 (2) 0.038 (2) 0.017 (2) 0.036 (2)
C3B 0.057 (2) 0.069 (3) 0.058 (3) 0.034 (2) 0.025 (2) 0.028 (2)
C4B 0.059 (2) 0.073 (3) 0.055 (3) 0.031 (2) 0.027 (2) 0.032 (2)
C5B 0.060 (2) 0.065 (2) 0.042 (2) 0.023 (2) 0.0192 (18) 0.0322 (19)
C6B 0.044 (2) 0.050 (2) 0.039 (2) 0.0169 (17) 0.0096 (16) 0.0198 (17)
C7B 0.049 (2) 0.058 (2) 0.046 (2) 0.0223 (18) 0.0116 (18) 0.0255 (19)
C8B 0.057 (2) 0.069 (3) 0.046 (2) 0.030 (2) 0.0189 (19) 0.036 (2)
C9B 0.100 (4) 0.128 (5) 0.113 (5) 0.075 (4) 0.060 (4) 0.073 (4)
C10B 0.141 (5) 0.137 (5) 0.110 (5) 0.067 (5) 0.046 (4) 0.059 (4)
C11B 0.090 (4) 0.121 (4) 0.114 (4) 0.070 (3) 0.062 (3) 0.069 (4)
C12B 0.110 (5) 0.130 (5) 0.100 (4) 0.049 (4) 0.041 (4) 0.049 (4)

Geometric parameters (Å, °)

O1A—C1A 1.360 (4) C3A—C4A 1.400 (6)
O1A—H1O1 0.8662 C4A—C5A 1.371 (5)
O2A—C8A 1.239 (4) C4A—H4AA 0.9300
N1A—C3A 1.418 (19) C5A—C6A 1.381 (5)
N1A—C11A 1.46 (3) C5A—H5AA 0.9300
N1A—C9A 1.46 (2) C6A—C7A 1.442 (5)
C9A—C10A 1.48 (3) C7A—H7AA 0.9300
C9A—H9AA 0.9700 O1B—C1B 1.361 (4)
C9A—H9AB 0.9700 O1B—H2O1 0.8740
C10A—H10A 0.9600 O2B—C8B 1.227 (4)
C10A—H10B 0.9600 N1B—C3B 1.376 (5)
C10A—H10C 0.9600 N1B—C9B 1.487 (6)
C11A—C12A 1.49 (2) N1B—C11B 1.506 (6)
C11A—H11A 0.9700 N2B—C7B 1.288 (4)
C11A—H11B 0.9700 N2B—N3B 1.385 (4)
C12A—H12A 0.9600 N3B—C8B 1.350 (5)
C12A—H12B 0.9600 N3B—H2N3 0.9855
C12A—H12C 0.9600 N4B—C8B 1.340 (4)
N1X—C3A 1.35 (3) N4B—H3N4 0.7808
N1X—C11X 1.44 (4) N4B—H4N4 0.8898
N1X—C9X 1.47 (4) C1B—C2B 1.381 (5)
C9X—C10X 1.50 (4) C1B—C6B 1.406 (5)
C9X—H9XA 0.9700 C2B—C3B 1.414 (5)
C9X—H9XB 0.9700 C2B—H2BA 0.9300
C10X—H10D 0.9600 C3B—C4B 1.385 (5)
C10X—H10E 0.9600 C4B—C5B 1.371 (5)
C10X—H10F 0.9600 C4B—H4BA 0.9300
C11X—C12X 1.50 (3) C5B—C6B 1.387 (5)
C11X—H11C 0.9700 C5B—H5BA 0.9300
C11X—H11D 0.9700 C6B—C7B 1.442 (5)
C12X—H12D 0.9600 C7B—H7BA 0.9300
C12X—H12E 0.9600 C9B—C10B 1.464 (7)
C12X—H12F 0.9600 C9B—H9BA 0.9700
N2A—C7A 1.287 (4) C9B—H9BB 0.9700
N2A—N3A 1.378 (4) C10B—H10G 0.9600
N3A—C8A 1.369 (4) C10B—H10H 0.9600
N3A—H1N3 0.9445 C10B—H10I 0.9600
N4A—C8A 1.330 (5) C11B—C12B 1.446 (7)
N4A—H1N4 0.7896 C11B—H11E 0.9700
N4A—H2N4 0.8989 C11B—H11F 0.9700
C1A—C2A 1.373 (5) C12B—H12G 0.9600
C1A—C6A 1.415 (5) C12B—H12H 0.9600
C2A—C3A 1.399 (5) C12B—H12I 0.9600
C2A—H2AA 0.9300
C1A—O1A—H1O1 102.4 C5A—C6A—C7A 122.3 (3)
C3A—N1A—C11A 121.8 (15) C1A—C6A—C7A 122.0 (3)
C3A—N1A—C9A 121.6 (15) N2A—C7A—C6A 122.1 (3)
C11A—N1A—C9A 116.2 (14) N2A—C7A—H7AA 118.9
N1A—C9A—C10A 116 (2) C6A—C7A—H7AA 118.9
N1A—C9A—H9AA 108.3 O2A—C8A—N4A 122.5 (3)
C10A—C9A—H9AA 108.3 O2A—C8A—N3A 119.0 (3)
N1A—C9A—H9AB 108.3 N4A—C8A—N3A 118.5 (3)
C10A—C9A—H9AB 108.3 C1B—O1B—H2O1 110.1
H9AA—C9A—H9AB 107.4 C3B—N1B—C9B 121.2 (4)
N1A—C11A—C12A 114 (2) C3B—N1B—C11B 121.1 (4)
N1A—C11A—H11A 108.7 C9B—N1B—C11B 117.0 (4)
C12A—C11A—H11A 108.7 C7B—N2B—N3B 116.0 (3)
N1A—C11A—H11B 108.7 C8B—N3B—N2B 122.0 (3)
C12A—C11A—H11B 108.7 C8B—N3B—H2N3 124.0
H11A—C11A—H11B 107.6 N2B—N3B—H2N3 113.6
C3A—N1X—C11X 126 (3) C8B—N4B—H3N4 117.2
C3A—N1X—C9X 124 (2) C8B—N4B—H4N4 120.9
C11X—N1X—C9X 110 (2) H3N4—N4B—H4N4 121.8
N1X—C9X—C10X 110 (3) O1B—C1B—C2B 116.7 (3)
N1X—C9X—H9XA 109.6 O1B—C1B—C6B 121.5 (3)
C10X—C9X—H9XA 109.6 C2B—C1B—C6B 121.8 (3)
N1X—C9X—H9XB 109.6 C1B—C2B—C3B 120.8 (4)
C10X—C9X—H9XB 109.6 C1B—C2B—H2BA 119.6
H9XA—C9X—H9XB 108.1 C3B—C2B—H2BA 119.6
C9X—C10X—H10D 109.5 N1B—C3B—C4B 122.4 (4)
C9X—C10X—H10E 109.5 N1B—C3B—C2B 120.3 (4)
H10D—C10X—H10E 109.5 C4B—C3B—C2B 117.3 (4)
C9X—C10X—H10F 109.5 C5B—C4B—C3B 120.8 (4)
H10D—C10X—H10F 109.5 C5B—C4B—H4BA 119.6
H10E—C10X—H10F 109.5 C3B—C4B—H4BA 119.6
N1X—C11X—C12X 121 (3) C4B—C5B—C6B 123.5 (4)
N1X—C11X—H11C 107.1 C4B—C5B—H5BA 118.3
C12X—C11X—H11C 107.1 C6B—C5B—H5BA 118.3
N1X—C11X—H11D 107.1 C5B—C6B—C1B 115.8 (3)
C12X—C11X—H11D 107.1 C5B—C6B—C7B 121.4 (3)
H11C—C11X—H11D 106.8 C1B—C6B—C7B 122.8 (3)
C11X—C12X—H12D 109.5 N2B—C7B—C6B 122.3 (3)
C11X—C12X—H12E 109.5 N2B—C7B—H7BA 118.9
H12D—C12X—H12E 109.5 C6B—C7B—H7BA 118.9
C11X—C12X—H12F 109.5 O2B—C8B—N4B 123.1 (4)
H12D—C12X—H12F 109.5 O2B—C8B—N3B 119.6 (3)
H12E—C12X—H12F 109.5 N4B—C8B—N3B 117.4 (3)
C7A—N2A—N3A 116.3 (3) C10B—C9B—N1B 109.9 (5)
C8A—N3A—N2A 120.3 (3) C10B—C9B—H9BA 109.7
C8A—N3A—H1N3 117.9 N1B—C9B—H9BA 109.7
N2A—N3A—H1N3 121.8 C10B—C9B—H9BB 109.7
C8A—N4A—H1N4 119.2 N1B—C9B—H9BB 109.7
C8A—N4A—H2N4 118.2 H9BA—C9B—H9BB 108.2
H1N4—N4A—H2N4 120.5 C9B—C10B—H10G 109.5
O1A—C1A—C2A 117.6 (3) C9B—C10B—H10H 109.5
O1A—C1A—C6A 120.6 (3) H10G—C10B—H10H 109.5
C2A—C1A—C6A 121.8 (3) C9B—C10B—H10I 109.5
C1A—C2A—C3A 121.3 (4) H10G—C10B—H10I 109.5
C1A—C2A—H2AA 119.3 H10H—C10B—H10I 109.5
C3A—C2A—H2AA 119.3 C12B—C11B—N1B 110.8 (5)
N1X—C3A—C2A 119.4 (14) C12B—C11B—H11E 109.5
N1X—C3A—C4A 121.0 (15) N1B—C11B—H11E 109.5
C2A—C3A—C4A 117.1 (4) C12B—C11B—H11F 109.5
C2A—C3A—N1A 120.6 (9) N1B—C11B—H11F 109.5
C4A—C3A—N1A 121.0 (9) H11E—C11B—H11F 108.1
C5A—C4A—C3A 120.6 (4) C11B—C12B—H12G 109.5
C5A—C4A—H4AA 119.7 C11B—C12B—H12H 109.5
C3A—C4A—H4AA 119.7 H12G—C12B—H12H 109.5
C4A—C5A—C6A 123.5 (4) C11B—C12B—H12I 109.5
C4A—C5A—H5AA 118.3 H12G—C12B—H12I 109.5
C6A—C5A—H5AA 118.3 H12H—C12B—H12I 109.5
C5A—C6A—C1A 115.7 (3)
C3A—N1A—C9A—C10A 84.1 (19) O1A—C1A—C6A—C7A 2.3 (6)
C11A—N1A—C9A—C10A −102.9 (19) C2A—C1A—C6A—C7A −178.9 (3)
C3A—N1A—C11A—C12A −86.4 (19) N3A—N2A—C7A—C6A 179.3 (3)
C9A—N1A—C11A—C12A 101 (2) C5A—C6A—C7A—N2A −178.6 (4)
C3A—N1X—C9X—C10X −67 (3) C1A—C6A—C7A—N2A 1.3 (6)
C11X—N1X—C9X—C10X 106 (2) N2A—N3A—C8A—O2A 179.5 (3)
C3A—N1X—C11X—C12X 71 (3) N2A—N3A—C8A—N4A −2.0 (5)
C9X—N1X—C11X—C12X −101 (3) C7B—N2B—N3B—C8B 172.5 (3)
C7A—N2A—N3A—C8A 179.0 (3) O1B—C1B—C2B—C3B −178.7 (3)
O1A—C1A—C2A—C3A 179.6 (4) C6B—C1B—C2B—C3B 0.4 (6)
C6A—C1A—C2A—C3A 0.7 (6) C9B—N1B—C3B—C4B −174.0 (4)
C11X—N1X—C3A—C2A 176 (2) C11B—N1B—C3B—C4B 16.0 (7)
C9X—N1X—C3A—C2A −13 (3) C9B—N1B—C3B—C2B 6.8 (7)
C11X—N1X—C3A—C4A 15 (3) C11B—N1B—C3B—C2B −163.2 (4)
C9X—N1X—C3A—C4A −174.7 (18) C1B—C2B—C3B—N1B 176.5 (4)
C11X—N1X—C3A—N1A −84 (5) C1B—C2B—C3B—C4B −2.7 (6)
C9X—N1X—C3A—N1A 87 (5) N1B—C3B—C4B—C5B −176.8 (4)
C1A—C2A—C3A—N1X −164.5 (14) C2B—C3B—C4B—C5B 2.4 (6)
C1A—C2A—C3A—C4A −2.2 (7) C3B—C4B—C5B—C6B 0.3 (6)
C1A—C2A—C3A—N1A 164.9 (10) C4B—C5B—C6B—C1B −2.6 (5)
C11A—N1A—C3A—N1X 91 (5) C4B—C5B—C6B—C7B 177.8 (3)
C9A—N1A—C3A—N1X −97 (5) O1B—C1B—C6B—C5B −178.7 (3)
C11A—N1A—C3A—C2A −174.0 (15) C2B—C1B—C6B—C5B 2.3 (5)
C9A—N1A—C3A—C2A −1(2) O1B—C1B—C6B—C7B 0.8 (5)
C11A—N1A—C3A—C4A −7(2) C2B—C1B—C6B—C7B −178.2 (3)
C9A—N1A—C3A—C4A 165.2 (13) N3B—N2B—C7B—C6B 178.5 (3)
N1X—C3A—C4A—C5A 163.9 (14) C5B—C6B—C7B—N2B −178.2 (3)
C2A—C3A—C4A—C5A 1.9 (7) C1B—C6B—C7B—N2B 2.2 (5)
N1A—C3A—C4A—C5A −165.2 (10) N2B—N3B—C8B—O2B −177.7 (3)
C3A—C4A—C5A—C6A −0.1 (7) N2B—N3B—C8B—N4B 1.7 (5)
C4A—C5A—C6A—C1A −1.4 (6) C3B—N1B—C9B—C10B −88.2 (6)
C4A—C5A—C6A—C7A 178.6 (4) C11B—N1B—C9B—C10B 82.1 (5)
O1A—C1A—C6A—C5A −177.8 (3) C3B—N1B—C11B—C12B −103.9 (5)
C2A—C1A—C6A—C5A 1.1 (6) C9B—N1B—C11B—C12B 85.7 (6)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1B–C6B benzene ring.
D—H···A D—H H···A D···A D—H···A
O1A—H1O1···N2A 0.87 1.79 2.608 (4) 157
O1B—H2O1···N2B 0.87 1.91 2.654 (5) 142
N3A—H1N3···O2Ai 0.95 1.90 2.832 (4) 168
N3B—H2N3···O2Bii 0.99 1.87 2.837 (4) 168
N4A—H1N4···O1B 0.79 2.40 3.077 (5) 144
N4A—H2N4···O2Biii 0.90 2.01 2.901 (5) 172
N4B—H3N4···O2Aiv 0.78 2.14 2.911 (5) 167
N4B—H4N4···O1A 0.89 2.20 2.962 (5) 144
C9A—H9AB···Cg1v 0.97 2.83 3.733 (19) 156
C10X—H10F···Cg1v 0.96 2.71 3.46 (3) 136

Symmetry codes: (i) −x, −y, −z; (ii) −x+2, −y, −z+1; (iii) x−1, y, z; (iv) x+1, y, z; (v) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6571).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Fun, H.-K., Chia, T. S., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2885–o2886. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000311/hb6571sup1.cif

e-68-0o380-sup1.cif (28.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000311/hb6571Isup2.hkl

e-68-0o380-Isup2.hkl (223.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000311/hb6571Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES