Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 14;68(Pt 2):o384. doi: 10.1107/S1600536812000220

Benzoic acid–3,4-bis­[(pyridin-3-ylmeth­yl)amino]­cyclo­but-3-ene-1,2-dione (1/2)

Andreas Lemmerer a,*, Susan A Bourne b
PMCID: PMC3275061  PMID: 22347006

Abstract

In the title co-crystal, C16H14N4O2·2C7H6O2, the 3,4-bis­[(pyridin-3-ylmeth­yl)amino]­cyclo­but-3-ene-1,2-dione squareamide mol­ecules assemble into chains along the b axis via N—H⋯O hydrogen bonds. The benzoic acid mol­ecules then hydrogen bond to the pyridine rings via O—H⋯N hydrogen bonds, supported by weaker C—H⋯O hydrogen bonds, forming extended ribbons. The asymmetric unit consists of a half squareamide mol­ecule, sitting on a special position around a twofold axis, and one benzoic acid mol­ecule on a general position.

Related literature

For the synthesis of related squareamides and co-crystals, see: Liu et al. (2002).graphic file with name e-68-0o384-scheme1.jpg

Experimental

Crystal data

  • C16H14N4O2·2C7H6O2

  • M r = 538.55

  • Monoclinic, Inline graphic

  • a = 24.617 (5) Å

  • b = 6.0285 (12) Å

  • c = 17.806 (4) Å

  • β = 93.08 (3)°

  • V = 2638.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.49 × 0.16 × 0.14 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2004) T min = 0.944, T max = 0.989

  • 15016 measured reflections

  • 3166 independent reflections

  • 2110 reflections with I > 2σ(I)

  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.116

  • S = 0.99

  • 3166 reflections

  • 190 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000220/fy2039sup1.cif

e-68-0o384-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000220/fy2039Isup2.hkl

e-68-0o384-Isup2.hkl (152.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000220/fy2039Isup3.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.915 (16) 1.889 (17) 2.7697 (15) 161.0 (13)
O2—H2⋯N2 1.07 (2) 1.57 (2) 2.6380 (15) 178.0 (17)
C2—H2A⋯O3 0.95 2.68 3.3341 (18) 127

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the University of the Witwatersrand, which is thanked for providing the infrastructure required to do this work.

supplementary crystallographic information

Comment

The title compound is a further example of co-crystals formed by squareamide molecules, in this case 3,4-bis[(pyridin-3-ylmethyl)amino]cyclobut-3-ene-1,2-dione, with carboxylic acid containing co-former molecules. Related co-crystals where the squaureamide molecule has the pyridine N atom in the 4 position are reported by Liu et al. (2002). The asymmetric unit consists of one half squareamide molecule, sitting around a twofold axis, and one complete benzoic acid molecule, on a general position (Fig. 1). The squareamide self-assembles into chains using the two N—H···O hydrogen bonds formed from the two amine N—-H groups to the diketones. The pyridine rings then act as hydrogen bond acceptors to the carboxylic acid functional group of the two benzoic acid molecules (Fig. 2).

Experimental

The title squareamide compound was synthesized according to literature procedures (Liu et al., 2002) by double condensation of diethyl squarate with 1-(pyridin-3-yl)methanamine in ethanol by stirring for 12 h. The resulting solid was filtered and dried. The squareamide was then dissolved in a 1:2 stoichiometric ratio with benzoic acid in a 1/1 v/v mixture of methanol and water. Plate-like, colourless crystals were harvested after a few days by slow evaporation at ambient conditions.

Refinement

The C-bound H atoms were geometrically placed with C—H bond lengths of 0.95 Å (aromatic CH) and 0.99 Å (methylene CH2) and were refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound and O-bound H atoms were located in the difference map and their coordinates and isotropic displacement parameters were refined freely.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) showing the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. Atoms with superscript i are generated by the symmetry operation (-x, y, -z + 1/2).

Fig. 2.

Fig. 2.

Hydrogen bonding diagram of the ribbons of (I). Intermolecular N—H···O and O—H···N hydrogen bonds are shown as dashed red lines.

Crystal data

C16H14N4O2·2C7H6O2 F(000) = 1128
Mr = 538.55 Dx = 1.356 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 16004 reflections
a = 24.617 (5) Å θ = 0.2–28.3°
b = 6.0285 (12) Å µ = 0.10 mm1
c = 17.806 (4) Å T = 173 K
β = 93.08 (3)° Plate, colourless
V = 2638.6 (9) Å3 0.49 × 0.16 × 0.14 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer 2110 reflections with I > 2σ(I)
2.0° ω scans Rint = 0.076
Absorption correction: integration (XPREP; Bruker, 2004) θmax = 28.0°, θmin = 2.3°
Tmin = 0.944, Tmax = 0.989 h = −32→26
15016 measured reflections k = −7→7
3166 independent reflections l = −23→21

Refinement

Refinement on F2 H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0659P)2 + ] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.044 (Δ/σ)max < 0.001
wR(F2) = 0.116 Δρmax = 0.23 e Å3
S = 0.99 Δρmin = −0.24 e Å3
3166 reflections Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
190 parameters Extinction coefficient: 0.0097 (11)
0 restraints

Special details

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.09548 (5) 0.7538 (2) 0.57965 (7) 0.0286 (3)
C2 0.10973 (5) 0.5561 (2) 0.54679 (7) 0.0333 (3)
H2A 0.0814 0.4569 0.5308 0.04*
C3 0.20066 (6) 0.6353 (3) 0.55968 (8) 0.0417 (4)
H3 0.2373 0.5946 0.5526 0.05*
C4 0.19060 (6) 0.8346 (3) 0.59354 (8) 0.0430 (4)
H4 0.2198 0.929 0.61 0.052*
C5 0.13726 (6) 0.8956 (2) 0.60321 (7) 0.0366 (3)
H5 0.1293 1.0337 0.6259 0.044*
C6 0.03667 (5) 0.8124 (2) 0.58837 (7) 0.0307 (3)
H6A 0.0312 0.9723 0.5777 0.037*
H6B 0.0136 0.7275 0.5513 0.037*
C7 0.00897 (5) 0.91990 (19) 0.71280 (7) 0.0261 (3)
C8 0.01001 (5) 1.16213 (19) 0.71131 (7) 0.0293 (3)
N1 0.02002 (4) 0.76350 (17) 0.66414 (6) 0.0298 (3)
H1 0.0195 (6) 0.616 (3) 0.6757 (8) 0.041 (4)*
N2 0.16108 (5) 0.49629 (19) 0.53623 (6) 0.0384 (3)
O1 0.02247 (4) 1.30418 (13) 0.66529 (5) 0.0373 (3)
C9 0.14385 (5) −0.1060 (2) 0.36020 (7) 0.0350 (3)
C10 0.18500 (6) −0.0836 (2) 0.31016 (8) 0.0423 (4)
H10 0.208 0.0431 0.3128 0.051*
C11 0.19255 (7) −0.2448 (3) 0.25655 (9) 0.0513 (4)
H11 0.2201 −0.2273 0.2217 0.062*
C12 0.16006 (8) −0.4312 (3) 0.25359 (9) 0.0573 (5)
H12 0.1657 −0.543 0.2172 0.069*
C13 0.11934 (8) −0.4557 (3) 0.30324 (10) 0.0559 (5)
H13 0.0972 −0.5848 0.3013 0.067*
C14 0.11075 (6) −0.2923 (3) 0.35590 (8) 0.0452 (4)
H14 0.0821 −0.3078 0.3892 0.054*
C15 0.13450 (6) 0.0665 (2) 0.41783 (8) 0.0374 (4)
O2 0.17883 (4) 0.18069 (17) 0.43789 (6) 0.0443 (3)
H2 0.1708 (7) 0.309 (3) 0.4774 (11) 0.080 (6)*
O3 0.09068 (4) 0.09691 (18) 0.44435 (6) 0.0484 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0315 (7) 0.0303 (7) 0.0247 (6) 0.0022 (5) 0.0069 (5) 0.0042 (5)
C2 0.0308 (7) 0.0342 (7) 0.0355 (7) 0.0025 (6) 0.0083 (6) −0.0004 (5)
C3 0.0282 (8) 0.0576 (9) 0.0400 (8) 0.0050 (7) 0.0092 (6) 0.0049 (7)
C4 0.0339 (8) 0.0501 (9) 0.0452 (8) −0.0078 (7) 0.0033 (6) 0.0024 (7)
C5 0.0401 (8) 0.0324 (7) 0.0376 (8) −0.0007 (6) 0.0065 (6) 0.0003 (6)
C6 0.0320 (7) 0.0289 (7) 0.0319 (7) 0.0048 (5) 0.0081 (5) 0.0008 (5)
C7 0.0227 (6) 0.0211 (6) 0.0353 (7) 0.0006 (5) 0.0073 (5) 0.0000 (5)
C8 0.0282 (7) 0.0219 (6) 0.0384 (7) 0.0012 (5) 0.0084 (5) 0.0004 (5)
N1 0.0355 (6) 0.0203 (6) 0.0348 (6) 0.0017 (5) 0.0130 (5) 0.0013 (4)
N2 0.0335 (7) 0.0443 (7) 0.0384 (7) 0.0092 (5) 0.0103 (5) −0.0012 (5)
O1 0.0468 (6) 0.0225 (5) 0.0440 (5) −0.0014 (4) 0.0159 (4) 0.0046 (4)
C9 0.0308 (7) 0.0419 (8) 0.0324 (7) 0.0077 (6) 0.0018 (6) 0.0064 (6)
C10 0.0372 (8) 0.0459 (8) 0.0445 (9) 0.0044 (6) 0.0093 (7) 0.0008 (6)
C11 0.0507 (10) 0.0624 (11) 0.0417 (9) 0.0148 (8) 0.0099 (7) −0.0028 (8)
C12 0.0702 (12) 0.0560 (11) 0.0441 (9) 0.0146 (9) −0.0110 (9) −0.0100 (7)
C13 0.0640 (12) 0.0507 (10) 0.0510 (10) −0.0084 (8) −0.0155 (9) −0.0003 (8)
C14 0.0393 (9) 0.0593 (10) 0.0367 (8) −0.0032 (7) −0.0025 (6) 0.0077 (7)
C15 0.0310 (8) 0.0460 (9) 0.0356 (8) 0.0100 (6) 0.0066 (6) 0.0074 (6)
O2 0.0331 (6) 0.0490 (6) 0.0518 (6) 0.0063 (5) 0.0112 (5) −0.0115 (5)
O3 0.0322 (6) 0.0669 (7) 0.0472 (6) 0.0120 (5) 0.0133 (5) 0.0027 (5)

Geometric parameters (Å, °)

C1—C2 1.3816 (18) C8—C8i 1.488 (3)
C1—C5 1.3849 (19) N1—H1 0.915 (16)
C1—C6 1.5061 (18) C9—C14 1.387 (2)
C2—N2 1.3374 (17) C9—C10 1.391 (2)
C2—H2A 0.95 C9—C15 1.487 (2)
C3—N2 1.3351 (19) C10—C11 1.382 (2)
C3—C4 1.373 (2) C10—H10 0.95
C3—H3 0.95 C11—C12 1.378 (2)
C4—C5 1.383 (2) C11—H11 0.95
C4—H4 0.95 C12—C13 1.380 (3)
C5—H5 0.95 C12—H12 0.95
C6—N1 1.4612 (16) C13—C14 1.384 (2)
C6—H6A 0.99 C13—H13 0.95
C6—H6B 0.99 C14—H14 0.95
C7—N1 1.3187 (16) C15—O3 1.2146 (16)
C7—C7i 1.419 (2) C15—O2 1.3231 (17)
C7—C8 1.4607 (17) O2—H2 1.07 (2)
C8—O1 1.2354 (15)
C2—C1—C5 117.35 (12) C7—N1—C6 122.71 (11)
C2—C1—C6 120.89 (12) C7—N1—H1 122.9 (9)
C5—C1—C6 121.76 (12) C6—N1—H1 114.3 (9)
N2—C2—C1 123.74 (13) C3—N2—C2 117.80 (12)
N2—C2—H2A 118.1 C14—C9—C10 119.28 (14)
C1—C2—H2A 118.1 C14—C9—C15 119.46 (13)
N2—C3—C4 122.74 (13) C10—C9—C15 121.26 (13)
N2—C3—H3 118.6 C11—C10—C9 120.24 (15)
C4—C3—H3 118.6 C11—C10—H10 119.9
C3—C4—C5 118.83 (14) C9—C10—H10 119.9
C3—C4—H4 120.6 C12—C11—C10 120.03 (16)
C5—C4—H4 120.6 C12—C11—H11 120
C4—C5—C1 119.53 (13) C10—C11—H11 120
C4—C5—H5 120.2 C11—C12—C13 120.19 (15)
C1—C5—H5 120.2 C11—C12—H12 119.9
N1—C6—C1 111.52 (10) C13—C12—H12 119.9
N1—C6—H6A 109.3 C12—C13—C14 120.03 (16)
C1—C6—H6A 109.3 C12—C13—H13 120
N1—C6—H6B 109.3 C14—C13—H13 120
C1—C6—H6B 109.3 C13—C14—C9 120.20 (16)
H6A—C6—H6B 108 C13—C14—H14 119.9
N1—C7—C7i 134.35 (7) C9—C14—H14 119.9
N1—C7—C8 134.30 (12) O3—C15—O2 123.58 (13)
C7i—C7—C8 91.35 (7) O3—C15—C9 123.19 (14)
O1—C8—C7 135.25 (12) O2—C15—C9 113.22 (12)
O1—C8—C8i 136.11 (7) C15—O2—H2 111.9 (10)
C7—C8—C8i 88.64 (7)
C5—C1—C2—N2 −0.52 (19) C4—C3—N2—C2 −0.2 (2)
C6—C1—C2—N2 178.76 (11) C1—C2—N2—C3 0.8 (2)
N2—C3—C4—C5 −0.7 (2) C14—C9—C10—C11 0.3 (2)
C3—C4—C5—C1 0.9 (2) C15—C9—C10—C11 −179.30 (13)
C2—C1—C5—C4 −0.35 (19) C9—C10—C11—C12 −1.5 (2)
C6—C1—C5—C4 −179.62 (12) C10—C11—C12—C13 1.1 (2)
C2—C1—C6—N1 98.57 (14) C11—C12—C13—C14 0.5 (2)
C5—C1—C6—N1 −82.19 (14) C12—C13—C14—C9 −1.6 (2)
N1—C7—C8—O1 −1.8 (3) C10—C9—C14—C13 1.2 (2)
C7i—C7—C8—O1 178.55 (15) C15—C9—C14—C13 −179.17 (13)
N1—C7—C8—C8i 178.45 (15) C14—C9—C15—O3 −25.7 (2)
C7i—C7—C8—C8i −1.20 (14) C10—C9—C15—O3 153.96 (14)
C7i—C7—N1—C6 178.04 (17) C14—C9—C15—O2 153.46 (12)
C8—C7—N1—C6 −1.5 (2) C10—C9—C15—O2 −26.92 (18)
C1—C6—N1—C7 110.22 (13)

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1ii 0.915 (16) 1.889 (17) 2.7697 (15) 161.0 (13)
O2—H2···N2 1.07 (2) 1.57 (2) 2.6380 (15) 178.0 (17)
C2—H2A···O3 0.95 2.68 3.3341 (18) 127

Symmetry codes: (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2039).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Liu, Y., Lam, A. H. W., Fowler, F. W. & Lauher, J. W. (2002). Mol. Cryst. Liq. Cryst. 389, 39–46.
  6. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000220/fy2039sup1.cif

e-68-0o384-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000220/fy2039Isup2.hkl

e-68-0o384-Isup2.hkl (152.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000220/fy2039Isup3.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES