Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 14;68(Pt 2):o387. doi: 10.1107/S1600536812000086

Methyl 2-(1a,4a-dimethyl-2,8-dioxo-2,3,4,4a,5,6,7,8-octa­hydro-1aH-1-oxacyclo­propa[d]naphthalen-7-yl)acrylate

Mohamed Tebbaa a, Ahmed Benharref a, Jean Claude Daran b, Fouad Mellouki a,*, Moha Berraho a
PMCID: PMC3275064  PMID: 22347009

Abstract

The title compound, C16H20O5, was synthesized from ilicic acid [2-(8-hy­droxy-4a,8-dimethyl­deca­hydro­naphthalen-2-yl)acrylic acid], which was isolated from the chloro­form extract of the aerial part of Inula viscose (L) Aiton [or Dittrichia viscosa­ (L) Greuter]. The molecule is built up from two fused six-membered rings, the epoxidized six-membered ring adopts a half-chair conformation while the other ring displays a perfect chair conformation. The crystal structure features C—H⋯O hydrogen bonds.

Related literature

For medicinal background to Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter], see: Shtacher & Kasshman (1970); Chiappini et al. (1982); Azoulay et al. (1986); Bohlman et al. (1977); Ceccherelli et al. (1988); Geissman & Toribio (1967) For the synthesis, see: Barrero et al. (2009); Tebbaa et al. (2011). For conformational analysis, see: Cremer & Pople (1975).graphic file with name e-68-0o387-scheme1.jpg

Experimental

Crystal data

  • C16H20O5

  • M r = 292.32

  • Orthorhombic, Inline graphic

  • a = 8.8626 (3) Å

  • b = 9.4552 (3) Å

  • c = 17.4080 (5) Å

  • V = 1458.75 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 180 K

  • 0.45 × 0.33 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire1 long nozzle diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.650, T max = 1.000

  • 33985 measured reflections

  • 1716 independent reflections

  • 1638 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.075

  • S = 1.06

  • 1716 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812000086/bt5772sup1.cif

e-68-0o387-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000086/bt5772Isup2.hkl

e-68-0o387-Isup2.hkl (82.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000086/bt5772Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O5i 0.97 2.57 3.492 (2) 158
C5—H5A⋯O4ii 0.97 2.50 3.337 (2) 145
C7—H7⋯O3ii 0.98 2.54 3.3321 (19) 138
C7—H7⋯O4ii 0.98 2.54 3.3877 (19) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Our work lies within the framework of the evaluation of medicinals plants and in particular, Inula Viscosa (L) Aiton or Dittrichia Viscosa (L) Greuter]. This plant is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970; Chiappini et al., 1982) and has some pharmacological activities (Azoulay et al., 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlman et al., 1977), sesquiterpene acids (Ceccherelli et al., 1988; Geissman & Toribio, 1967). The ilicic acid is one of the main components of the dichloromethane extract of the Inula Viscosa (L) Aiton or Dittrichia Viscosa (L) Greuter]. The literature reports one article on the transformation of the ilicic acid (Barrero et al., 2009). In order to prepare products with high added value, that can be used in the pharmacologycal industry, we have studied the reactivity of this sesquiterpene acid. Thus, from this acid, we have prepared by the method of Barrero et al. (2009), 2-(4a,8-Dimethyl-1, 2,3,4,4 a,5,6,7-octahydro naphthalen-2-yl)-acrylic acid methyl ester(1) (Figure 3). The epoxidation of this sesquiterpene by metachloroperbenzoic acid (mCPBA), followed by the opening of the epoxide, obtained by Bi(OTf)3 (Tebbaa et al., 2011), leads to the compound (2) with a yield of 40%. The oxidation of the latter with chromic anhydride (CrO3) leads to the title compound with a yield of 60%. The crystal structure of the title compound is escribed herein. The molecule is built up from two fused six-membered rings. The molecular structure (Fig. 1), shows that the two rings adopt different conformations. A perfect chair conformation for the first ring (C1, C4a···C8) as indicated by Cremer & Pople (1975) puckering parameters Q(T)= 0.5561 (19)Å and spherical polar angle θ = 178.35 (18)° with φ = 245 (6)°. While the second ring (C1, C4a···C1a) displays a half chair conformation with Q(T) = 0.4303 (19), θ = 47,5(2)° and φ = 225,8(3). The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds. (Table 1, Figure 2).

Experimental

To a solution of 1 g (4 mmol) of 2-(4a,8-Dimethyl-2, 3,4,4a,5,6- hexahydro-naphthalene-2-yl)-acrylic acid methyl ester (2) dissolved in 20 ml acetone is added in small portions three equivalents of chromic anhydride (CrO3) at 0° C. The reaction mixture is left stirring for 1 h, then treated with 20 ml of cold water and extracted three times with 30 ml of ethyl acetate. The organic phases are combined, dried over sodium sulfate and concentrated under reduced pressure. The residue obtained is chromatographed on silica gel eluting with hexane-ethyl acetate (98–2) allowed the isolation in pure the 2 - (1a, 4a-dimethyl-2, 8 -dioxo- octahydro-1-oxa-cycloprop [d] naphthalene-7-yl)-acrylic acid methyl, with a yield of 60% (70 mg, 2.4 mmol). The title compound was recrystallized from its dichloromethane solution at room temperature.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) and 0.93 Å (C=CH2) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). In the absence of significant anomalous scatterers, the absolute configuration could not be reliably determined and Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

: packing view showing the C–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Fig. 3.

Fig. 3.

: Synthesis of the title compound.

Crystal data

C16H20O5 F(000) = 624
Mr = 292.32 Dx = 1.331 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 33985 reflections
a = 8.8626 (3) Å θ = 3.2–26.4°
b = 9.4552 (3) Å µ = 0.10 mm1
c = 17.4080 (5) Å T = 180 K
V = 1458.75 (8) Å3 Prism, colourless
Z = 4 0.45 × 0.33 × 0.12 mm

Data collection

Oxford Diffraction Xcalibur Sapphire1 long nozzle diffractometer 1716 independent reflections
Radiation source: fine-focus sealed tube 1638 reflections with I > 2σ(I)
graphite Rint = 0.040
Detector resolution: 8.2632 pixels mm-1 θmax = 26.4°, θmin = 3.2°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −11→11
Tmin = 0.650, Tmax = 1.000 l = −21→21
33985 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.2444P] where P = (Fo2 + 2Fc2)/3
1716 reflections (Δ/σ)max < 0.001
193 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Oxford Diffraction, 2010)
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.13339 (18) 0.03809 (16) 0.70987 (9) 0.0207 (3)
C1A −0.05450 (19) 0.08964 (18) 0.64052 (9) 0.0239 (3)
C2 −0.1449 (2) 0.1740 (2) 0.58274 (10) 0.0299 (4)
C3 −0.2984 (2) 0.2227 (2) 0.60642 (10) 0.0330 (4)
H3A −0.3578 0.2417 0.5607 0.040*
H3B −0.2889 0.3106 0.6347 0.040*
C4 −0.3818 (2) 0.1157 (2) 0.65598 (10) 0.0304 (4)
H4A −0.4002 0.0313 0.6257 0.036*
H4B −0.4790 0.1549 0.6702 0.036*
C4A −0.29707 (17) 0.07384 (17) 0.72924 (9) 0.0220 (3)
C5 −0.29623 (18) 0.19549 (17) 0.78766 (9) 0.0233 (3)
H5A −0.2565 0.2797 0.7631 0.028*
H5B −0.3992 0.2154 0.8031 0.028*
C6 −0.20299 (18) 0.16391 (19) 0.85886 (9) 0.0244 (4)
H6A −0.2494 0.0868 0.8870 0.029*
H6B −0.2025 0.2465 0.8919 0.029*
C7 −0.03943 (17) 0.12379 (16) 0.83876 (8) 0.0194 (3)
H7 0.0067 0.2064 0.8142 0.023*
C8 −0.04044 (17) 0.00594 (16) 0.78003 (9) 0.0204 (3)
C9 0.05601 (18) 0.08709 (18) 0.90730 (9) 0.0224 (3)
C10 0.22089 (18) 0.10826 (18) 0.89680 (9) 0.0221 (3)
C11 0.0043 (2) 0.0305 (3) 0.97121 (11) 0.0409 (5)
H11A 0.0709 0.0037 1.0098 0.049*
H11B −0.0989 0.0173 0.9777 0.049*
C12 0.1137 (2) 0.1040 (2) 0.63642 (10) 0.0322 (4)
H12A 0.1479 0.0766 0.5863 0.048*
H12B 0.1594 0.0442 0.6744 0.048*
H12C 0.1415 0.2006 0.6460 0.048*
C13 −0.3722 (2) −0.05753 (19) 0.76273 (11) 0.0314 (4)
H13A −0.3246 −0.0817 0.8105 0.047*
H13B −0.3620 −0.1348 0.7273 0.047*
H13C −0.4773 −0.0388 0.7715 0.047*
C14 0.4577 (2) 0.1183 (3) 0.95628 (11) 0.0376 (5)
H14A 0.4832 0.2048 0.9305 0.056*
H14B 0.4952 0.0395 0.9272 0.056*
H14C 0.5025 0.1178 1.0065 0.056*
O1 0.29605 (13) 0.10753 (16) 0.96328 (7) 0.0318 (3)
O2 0.28032 (14) 0.12332 (15) 0.83537 (7) 0.0307 (3)
O3 −0.11162 (14) −0.05477 (12) 0.64566 (6) 0.0263 (3)
O4 0.02356 (14) −0.10571 (13) 0.78860 (7) 0.0298 (3)
O5 −0.09164 (19) 0.19766 (18) 0.52039 (8) 0.0492 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0221 (8) 0.0195 (7) 0.0205 (7) 0.0005 (6) 0.0014 (6) −0.0044 (6)
C1A 0.0274 (8) 0.0231 (8) 0.0211 (7) 0.0002 (7) 0.0024 (6) −0.0017 (6)
C2 0.0388 (10) 0.0275 (8) 0.0235 (8) 0.0001 (8) −0.0015 (7) 0.0006 (7)
C3 0.0358 (10) 0.0372 (10) 0.0261 (8) 0.0086 (9) −0.0073 (8) 0.0024 (8)
C4 0.0239 (8) 0.0380 (10) 0.0293 (8) 0.0020 (8) −0.0073 (7) −0.0046 (8)
C4A 0.0181 (7) 0.0245 (8) 0.0234 (7) 0.0004 (6) −0.0007 (6) −0.0025 (7)
C5 0.0192 (7) 0.0251 (8) 0.0255 (7) 0.0042 (6) 0.0000 (6) −0.0029 (7)
C6 0.0205 (8) 0.0291 (9) 0.0235 (8) 0.0042 (7) 0.0015 (7) −0.0052 (7)
C7 0.0184 (7) 0.0201 (7) 0.0198 (7) 0.0001 (6) 0.0003 (6) 0.0001 (6)
C8 0.0161 (7) 0.0225 (7) 0.0226 (7) −0.0004 (6) 0.0049 (6) 0.0004 (6)
C9 0.0212 (8) 0.0242 (8) 0.0218 (7) 0.0006 (7) 0.0005 (6) −0.0003 (6)
C10 0.0215 (8) 0.0232 (8) 0.0215 (7) 0.0022 (7) −0.0012 (6) 0.0009 (7)
C11 0.0256 (9) 0.0678 (14) 0.0294 (9) −0.0027 (9) −0.0007 (8) 0.0167 (10)
C12 0.0284 (9) 0.0370 (10) 0.0314 (8) −0.0018 (9) 0.0083 (7) −0.0012 (8)
C13 0.0262 (9) 0.0300 (9) 0.0379 (9) −0.0058 (8) 0.0026 (8) −0.0030 (8)
C14 0.0194 (8) 0.0599 (12) 0.0336 (9) −0.0015 (9) −0.0043 (7) 0.0025 (10)
O1 0.0201 (6) 0.0533 (8) 0.0221 (6) −0.0018 (6) −0.0024 (5) 0.0008 (6)
O2 0.0256 (6) 0.0437 (8) 0.0226 (6) 0.0003 (6) 0.0034 (5) 0.0049 (6)
O3 0.0327 (6) 0.0227 (6) 0.0235 (6) 0.0004 (5) 0.0021 (5) −0.0059 (5)
O4 0.0329 (6) 0.0234 (6) 0.0331 (6) 0.0086 (5) −0.0033 (5) −0.0013 (5)
O5 0.0603 (9) 0.0587 (10) 0.0286 (7) 0.0110 (8) 0.0104 (7) 0.0139 (7)

Geometric parameters (Å, °)

C1—O3 1.4344 (19) C6—H6B 0.9700
C1—C1A 1.478 (2) C7—C9 1.503 (2)
C1—C8 1.504 (2) C7—C8 1.512 (2)
C1—C4A 1.527 (2) C7—H7 0.9800
C1A—O3 1.459 (2) C8—O4 1.208 (2)
C1A—C12 1.499 (2) C9—C11 1.317 (2)
C1A—C2 1.513 (2) C9—C10 1.486 (2)
C2—O5 1.204 (2) C10—O2 1.2005 (19)
C2—C3 1.495 (3) C10—O1 1.3354 (19)
C3—C4 1.521 (3) C11—H11A 0.9300
C3—H3A 0.9700 C11—H11B 0.9300
C3—H3B 0.9700 C12—H12A 0.9600
C4—C4A 1.532 (2) C12—H12B 0.9600
C4—H4A 0.9700 C12—H12C 0.9600
C4—H4B 0.9700 C13—H13A 0.9600
C4A—C13 1.525 (2) C13—H13B 0.9600
C4A—C5 1.535 (2) C13—H13C 0.9600
C5—C6 1.519 (2) C14—O1 1.442 (2)
C5—H5A 0.9700 C14—H14A 0.9600
C5—H5B 0.9700 C14—H14B 0.9600
C6—C7 1.539 (2) C14—H14C 0.9600
C6—H6A 0.9700
O3—C1—C1A 60.11 (10) C5—C6—H6B 109.2
O3—C1—C8 115.80 (13) C7—C6—H6B 109.2
C1A—C1—C8 118.09 (13) H6A—C6—H6B 107.9
O3—C1—C4A 115.81 (12) C9—C7—C8 111.71 (13)
C1A—C1—C4A 123.84 (14) C9—C7—C6 113.99 (13)
C8—C1—C4A 112.69 (13) C8—C7—C6 109.26 (12)
O3—C1A—C1 58.47 (10) C9—C7—H7 107.2
O3—C1A—C12 115.66 (14) C8—C7—H7 107.2
C1—C1A—C12 122.65 (15) C6—C7—H7 107.2
O3—C1A—C2 110.53 (14) O4—C8—C1 122.29 (15)
C1—C1A—C2 117.81 (15) O4—C8—C7 123.90 (15)
C12—C1A—C2 116.54 (16) C1—C8—C7 113.78 (13)
O5—C2—C3 123.23 (18) C11—C9—C10 120.07 (15)
O5—C2—C1A 119.32 (18) C11—C9—C7 124.64 (15)
C3—C2—C1A 117.45 (15) C10—C9—C7 115.12 (14)
C2—C3—C4 113.19 (16) O2—C10—O1 123.63 (15)
C2—C3—H3A 108.9 O2—C10—C9 123.85 (15)
C4—C3—H3A 108.9 O1—C10—C9 112.52 (14)
C2—C3—H3B 108.9 C9—C11—H11A 120.0
C4—C3—H3B 108.9 C9—C11—H11B 120.0
H3A—C3—H3B 107.8 H11A—C11—H11B 120.0
C3—C4—C4A 113.97 (14) C1A—C12—H12A 109.5
C3—C4—H4A 108.8 C1A—C12—H12B 109.5
C4A—C4—H4A 108.8 H12A—C12—H12B 109.5
C3—C4—H4B 108.8 C1A—C12—H12C 109.5
C4A—C4—H4B 108.8 H12A—C12—H12C 109.5
H4A—C4—H4B 107.7 H12B—C12—H12C 109.5
C13—C4A—C1 108.59 (14) C4A—C13—H13A 109.5
C13—C4A—C4 108.35 (14) C4A—C13—H13B 109.5
C1—C4A—C4 109.80 (13) H13A—C13—H13B 109.5
C13—C4A—C5 111.05 (13) C4A—C13—H13C 109.5
C1—C4A—C5 107.90 (12) H13A—C13—H13C 109.5
C4—C4A—C5 111.11 (13) H13B—C13—H13C 109.5
C6—C5—C4A 113.32 (13) O1—C14—H14A 109.5
C6—C5—H5A 108.9 O1—C14—H14B 109.5
C4A—C5—H5A 108.9 H14A—C14—H14B 109.5
C6—C5—H5B 108.9 O1—C14—H14C 109.5
C4A—C5—H5B 108.9 H14A—C14—H14C 109.5
H5A—C5—H5B 107.7 H14B—C14—H14C 109.5
C5—C6—C7 112.04 (13) C10—O1—C14 114.97 (13)
C5—C6—H6A 109.2 C1—O3—C1A 61.42 (10)
C7—C6—H6A 109.2

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O5i 0.97 2.57 3.492 (2) 158
C5—H5A···O4ii 0.97 2.50 3.337 (2) 145
C7—H7···O3ii 0.98 2.54 3.3321 (19) 138
C7—H7···O4ii 0.98 2.54 3.3877 (19) 145

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5772).

References

  1. Azoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345–352. [PubMed]
  2. Barrero, A. F., Herrador, M. M., Arteaga, J. & Catalán, V. (2009). Eur. J. Org. Chem. pp. 3589-3594.
  3. Bohlman, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330–1334.
  4. Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006–1009. [DOI] [PubMed]
  5. Chiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). Planta Med. 44, 159–161. [DOI] [PubMed]
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Geissman, T. A. & Toribio, F. P. (1967). Phytochemistry, 6, 1563–1567.
  10. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221–1223. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Tebbaa, M., Elhakmaoui, A., Benharref, A. & Akssira, M. (2011). Tetrahedron Lett. 52, 3769–3771.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812000086/bt5772sup1.cif

e-68-0o387-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000086/bt5772Isup2.hkl

e-68-0o387-Isup2.hkl (82.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000086/bt5772Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES