Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 14;68(Pt 2):o412. doi: 10.1107/S1600536812000529

N′-[(2Z)-4-Oxo-4-phenyl­but-2-en-2-yl]pyridine-4-carbohydrazide

Rahman Bikas a,, Parisa Mahboubi Anarjan b, Sanam Aslekhademi c, Seik Weng Ng d,e, Edward R T Tiekink d,*
PMCID: PMC3275172  PMID: 22347028

Abstract

There are significant twists in the title compound, C16H15N3O2, as seen in the dihedral angle between the benzene and adjacent but-2-enal group [29.26 (4)°] and between the pyridine ring and amide group [24.79 (6)°]. A twist is also evident around the hydrazine bond [the C—N—N—C torsion angle is −138.25 (13)°]. The conformation about the ethene bond is Z. An intra­molecular N—H⋯O hydrogen bond involving the benzoyl O atom and leading to an S(6) motif is formed. Significant delocalization of π-electron density is found in this part of the mol­ecule. In the crystal, helical supra­molecular chains aligned along the b axis and mediated by N—H⋯O hydrogen bonds are formed.

Related literature

For the structures of related carbohydrazides, see: Bikas et al. (2010, 2012).graphic file with name e-68-0o412-scheme1.jpg

Experimental

Crystal data

  • C16H15N3O2

  • M r = 281.31

  • Monoclinic, Inline graphic

  • a = 15.7640 (4) Å

  • b = 6.5194 (1) Å

  • c = 13.3093 (3) Å

  • β = 93.579 (2)°

  • V = 1365.15 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.76 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.864, T max = 0.963

  • 5321 measured reflections

  • 2808 independent reflections

  • 2397 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.109

  • S = 1.02

  • 2808 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000529/hg5158sup1.cif

e-68-0o412-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000529/hg5158Isup2.hkl

e-68-0o412-Isup2.hkl (137.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000529/hg5158Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.88 (2) 1.90 (2) 2.750 (2) 163 (2)
N3—H3⋯O2 0.90 (2) 1.91 (2) 2.607 (1) 133 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Islamic Azad University (Tabriz Branch), the University of Zanjan and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for support of this study.

supplementary crystallographic information

Comment

The reaction of acid hydrazides (R—C(═ O)–NH–NH2) with β-diketones forms a class of molecules that can function as tridentate Schiff base ligands and which can have diverse tautomeric states. As part of continuing studies on the synthesis and characterization of aroylhydrazone compounds (Bikas et al., 2010; Bikas et al., 2012), we describe herein the crystal structure of (Z)-N'-(4-oxo-4-phenylbut-2-en-2-yl)isonicotinohydrazide, (I).

The structure determination of (I), Fig. 1, shows that the molecule exists in the di-enone form and that the conformation about the ethene bond is Z. However, it is noted that the ketone C═O bond length of 1.2705 (15) Å is significantly longer than the amide C═O bond length of 1.2213 (16) Å. Further, the formally ethene double bond length of 1.3905 (18) Å is only marginally longer than the C(═O)—C-ethene bond of 1.4097 (18) Å. These observations coupled with the shorter than expected N3—C7 bond length of 1.3369 (16) Å and the planarity of this residue (the r.m.s. = 0.0141 Å, including the N—H atom) indicates significant delocalization of π-electron density over the non-H atoms. It is noted that in this residue a six-membered ring is formed through the agency of an intramolecular N—H···O hydrogen bond, Table 1.

There are significant twists in the molecule with the benzene group twisted out of the plane through the adjacent but-2-enal group (dihedral angle = 29.26 (4)°) and the pyridyl ring twisted out of the plane through the amide group (dihedral angle = 24.79 (6)°). There is also a twist around the hydrazine bond as seen in the value of the C6—N2—N3—C7 torsion angle of -138.25 (13)°.

The most prominent feature of the crystal packing is the formation of helical supramolecular chains along [010] mediated by N—H···O hydrogen bonds, Fig. 2 and Table 1.

Experimental

All reagents were commercially available and used as received. A methanol (10 ml) solution of benzoylacetone (1.5 mmol) was added drop-wise to a methanol solution (10 ml) of 4-pyridinecarboxylic acid hydrazide (1.5 mmol), and the mixture was refluxed for 3 h. Then the solution was evaporated on a steam bath to 5 ml and cooled to room temperature. Light-yellow precipitates of the title compound were separated and filtered off, washed with 3 ml of cooled methanol and then dried in air. Crystals of the title compound were obtained from its methanol solution by slow solvent evaporation. Yield 92%. Selected IR (cm-1): 3155 (s, broad), 1690 (versus), 1596 (s), 1520 (m), 1309 (s), 1224 (s), 931 (versus), 772 (s).

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their Uiso values were refined.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with displacement ellipsoids at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Supramolecular helical chain parallel to [010] in (I). The N—H···O hydrogen bonds are shown as orange dashed lines.

Crystal data

C16H15N3O2 F(000) = 592
Mr = 281.31 Dx = 1.369 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 2202 reflections
a = 15.7640 (4) Å θ = 2.8–76.4°
b = 6.5194 (1) Å µ = 0.76 mm1
c = 13.3093 (3) Å T = 100 K
β = 93.579 (2)° Prism, colourless
V = 1365.15 (5) Å3 0.20 × 0.10 × 0.05 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2808 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2397 reflections with I > 2σ(I)
Mirror Rint = 0.022
Detector resolution: 10.4041 pixels mm-1 θmax = 76.6°, θmin = 2.8°
ω scan h = −14→19
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −8→4
Tmin = 0.864, Tmax = 0.963 l = −13→16
5321 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.4474P] where P = (Fo2 + 2Fc2)/3
2808 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.64472 (6) 0.16395 (15) 0.10581 (7) 0.0222 (2)
O2 0.39259 (6) 0.19577 (14) 0.15136 (7) 0.0192 (2)
N1 0.93135 (7) 0.45503 (19) 0.21632 (9) 0.0244 (3)
N2 0.61169 (7) 0.47152 (17) 0.17399 (9) 0.0182 (2)
N3 0.52548 (7) 0.43426 (17) 0.15465 (8) 0.0176 (2)
C1 0.75840 (8) 0.3754 (2) 0.17323 (9) 0.0170 (3)
C2 0.81664 (9) 0.2161 (2) 0.18446 (10) 0.0215 (3)
H2A 0.7986 0.0775 0.1773 0.026*
C3 0.90178 (9) 0.2629 (2) 0.20629 (11) 0.0249 (3)
H3A 0.9411 0.1529 0.2145 0.030*
C4 0.87448 (9) 0.6070 (2) 0.20366 (10) 0.0225 (3)
H4 0.8945 0.7442 0.2095 0.027*
C5 0.78809 (8) 0.5759 (2) 0.18252 (10) 0.0194 (3)
H5 0.7502 0.6888 0.1746 0.023*
C6 0.66681 (8) 0.3232 (2) 0.14810 (9) 0.0168 (3)
C7 0.47294 (8) 0.58056 (19) 0.11764 (9) 0.0170 (3)
C8 0.50980 (8) 0.7859 (2) 0.09507 (10) 0.0197 (3)
H8A 0.5348 0.8469 0.1574 0.030*
H8B 0.4648 0.8758 0.0661 0.030*
H8C 0.5539 0.7695 0.0470 0.030*
C9 0.38667 (8) 0.5408 (2) 0.09966 (10) 0.0174 (3)
H9 0.3508 0.6492 0.0753 0.021*
C10 0.34988 (8) 0.3474 (2) 0.11585 (9) 0.0166 (3)
C11 0.25751 (8) 0.3125 (2) 0.08761 (9) 0.0173 (3)
C12 0.19729 (8) 0.4687 (2) 0.08987 (10) 0.0204 (3)
H12 0.2147 0.6046 0.1066 0.025*
C13 0.11164 (9) 0.4262 (2) 0.06766 (11) 0.0251 (3)
H13 0.0706 0.5322 0.0711 0.030*
C14 0.08620 (9) 0.2289 (2) 0.04045 (11) 0.0260 (3)
H14 0.0277 0.2003 0.0250 0.031*
C15 0.14599 (9) 0.0735 (2) 0.03576 (11) 0.0248 (3)
H15 0.1286 −0.0610 0.0163 0.030*
C16 0.23130 (9) 0.1148 (2) 0.05958 (10) 0.0209 (3)
H16 0.2721 0.0080 0.0568 0.025*
H2 0.6210 (11) 0.549 (3) 0.2275 (14) 0.029 (5)*
H3 0.5045 (11) 0.308 (3) 0.1636 (13) 0.028 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0214 (5) 0.0160 (5) 0.0288 (5) −0.0010 (4) −0.0021 (4) −0.0039 (4)
O2 0.0180 (4) 0.0157 (5) 0.0239 (5) 0.0014 (3) 0.0007 (4) 0.0039 (4)
N1 0.0184 (6) 0.0260 (6) 0.0289 (6) −0.0015 (5) 0.0014 (5) −0.0019 (5)
N2 0.0150 (5) 0.0182 (5) 0.0213 (6) −0.0014 (4) −0.0003 (4) −0.0038 (4)
N3 0.0146 (5) 0.0158 (5) 0.0224 (5) −0.0007 (4) 0.0006 (4) 0.0004 (4)
C1 0.0171 (6) 0.0179 (6) 0.0159 (6) −0.0012 (5) 0.0009 (5) −0.0004 (5)
C2 0.0205 (6) 0.0171 (6) 0.0268 (7) 0.0007 (5) 0.0009 (5) 0.0007 (5)
C3 0.0198 (7) 0.0235 (7) 0.0312 (7) 0.0024 (5) 0.0006 (6) 0.0009 (6)
C4 0.0219 (7) 0.0197 (7) 0.0261 (7) −0.0038 (5) 0.0028 (5) −0.0020 (5)
C5 0.0198 (6) 0.0173 (6) 0.0214 (6) −0.0004 (5) 0.0024 (5) −0.0006 (5)
C6 0.0183 (6) 0.0155 (6) 0.0165 (6) −0.0001 (5) 0.0011 (5) 0.0017 (5)
C7 0.0204 (6) 0.0147 (6) 0.0159 (6) 0.0009 (5) 0.0021 (5) −0.0006 (5)
C8 0.0210 (6) 0.0152 (6) 0.0231 (6) −0.0009 (5) 0.0017 (5) 0.0008 (5)
C9 0.0180 (6) 0.0160 (6) 0.0183 (6) 0.0022 (5) 0.0015 (5) 0.0010 (5)
C10 0.0177 (6) 0.0163 (6) 0.0160 (6) 0.0024 (5) 0.0030 (5) 0.0007 (5)
C11 0.0168 (6) 0.0189 (6) 0.0162 (6) −0.0006 (5) 0.0016 (5) 0.0016 (5)
C12 0.0193 (6) 0.0194 (6) 0.0227 (6) 0.0013 (5) 0.0019 (5) 0.0009 (5)
C13 0.0189 (7) 0.0277 (7) 0.0289 (7) 0.0043 (5) 0.0026 (5) 0.0020 (6)
C14 0.0170 (6) 0.0323 (8) 0.0284 (7) −0.0037 (5) −0.0012 (5) 0.0018 (6)
C15 0.0237 (7) 0.0233 (7) 0.0271 (7) −0.0050 (5) 0.0003 (5) −0.0014 (6)
C16 0.0209 (7) 0.0196 (7) 0.0223 (6) 0.0003 (5) 0.0024 (5) 0.0000 (5)

Geometric parameters (Å, °)

O1—C6 1.2213 (16) C7—C8 1.4973 (17)
O2—C10 1.2705 (15) C8—H8A 0.9800
N1—C4 1.3395 (18) C8—H8B 0.9800
N1—C3 1.3401 (18) C8—H8C 0.9800
N2—C6 1.3587 (17) C9—C10 1.4097 (18)
N2—N3 1.3887 (15) C9—H9 0.9500
N2—H2 0.878 (18) C10—C11 1.4984 (17)
N3—C7 1.3369 (16) C11—C12 1.3938 (18)
N3—H3 0.899 (18) C11—C16 1.3974 (19)
C1—C2 1.3884 (18) C12—C13 1.3918 (18)
C1—C5 1.3914 (18) C12—H12 0.9500
C1—C6 1.5006 (17) C13—C14 1.389 (2)
C2—C3 1.3894 (19) C13—H13 0.9500
C2—H2A 0.9500 C14—C15 1.388 (2)
C3—H3A 0.9500 C14—H14 0.9500
C4—C5 1.3882 (19) C15—C16 1.3887 (19)
C4—H4 0.9500 C15—H15 0.9500
C5—H5 0.9500 C16—H16 0.9500
C7—C9 1.3905 (18)
C4—N1—C3 116.92 (12) C7—C8—H8B 109.5
C6—N2—N3 117.55 (11) H8A—C8—H8B 109.5
C6—N2—H2 122.5 (11) C7—C8—H8C 109.5
N3—N2—H2 111.3 (11) H8A—C8—H8C 109.5
C7—N3—N2 121.34 (11) H8B—C8—H8C 109.5
C7—N3—H3 118.6 (11) C7—C9—C10 123.22 (12)
N2—N3—H3 120.0 (11) C7—C9—H9 118.4
C2—C1—C5 118.48 (12) C10—C9—H9 118.4
C2—C1—C6 118.35 (12) O2—C10—C9 122.62 (12)
C5—C1—C6 123.13 (12) O2—C10—C11 117.35 (11)
C1—C2—C3 118.80 (13) C9—C10—C11 120.00 (11)
C1—C2—H2A 120.6 C12—C11—C16 119.30 (12)
C3—C2—H2A 120.6 C12—C11—C10 122.43 (12)
N1—C3—C2 123.49 (13) C16—C11—C10 118.26 (12)
N1—C3—H3A 118.3 C13—C12—C11 120.19 (13)
C2—C3—H3A 118.3 C13—C12—H12 119.9
N1—C4—C5 123.92 (13) C11—C12—H12 119.9
N1—C4—H4 118.0 C14—C13—C12 120.03 (13)
C5—C4—H4 118.0 C14—C13—H13 120.0
C4—C5—C1 118.39 (12) C12—C13—H13 120.0
C4—C5—H5 120.8 C15—C14—C13 120.13 (13)
C1—C5—H5 120.8 C15—C14—H14 119.9
O1—C6—N2 123.60 (12) C13—C14—H14 119.9
O1—C6—C1 122.56 (12) C16—C15—C14 119.93 (13)
N2—C6—C1 113.82 (11) C16—C15—H15 120.0
N3—C7—C9 120.46 (12) C14—C15—H15 120.0
N3—C7—C8 118.20 (11) C15—C16—C11 120.38 (13)
C9—C7—C8 121.33 (11) C15—C16—H16 119.8
C7—C8—H8A 109.5 C11—C16—H16 119.8
C6—N2—N3—C7 −138.25 (13) N3—C7—C9—C10 −1.89 (19)
C5—C1—C2—C3 1.2 (2) C8—C7—C9—C10 177.29 (12)
C6—C1—C2—C3 179.09 (12) C7—C9—C10—O2 2.3 (2)
C4—N1—C3—C2 −0.4 (2) C7—C9—C10—C11 −175.56 (11)
C1—C2—C3—N1 −0.6 (2) O2—C10—C11—C12 151.66 (13)
C3—N1—C4—C5 0.9 (2) C9—C10—C11—C12 −30.34 (18)
N1—C4—C5—C1 −0.4 (2) O2—C10—C11—C16 −27.33 (17)
C2—C1—C5—C4 −0.68 (19) C9—C10—C11—C16 150.67 (12)
C6—C1—C5—C4 −178.49 (12) C16—C11—C12—C13 2.1 (2)
N3—N2—C6—O1 2.78 (19) C10—C11—C12—C13 −176.86 (12)
N3—N2—C6—C1 −179.11 (10) C11—C12—C13—C14 −1.8 (2)
C2—C1—C6—O1 −24.59 (19) C12—C13—C14—C15 0.3 (2)
C5—C1—C6—O1 153.23 (13) C13—C14—C15—C16 0.8 (2)
C2—C1—C6—N2 157.27 (12) C14—C15—C16—C11 −0.5 (2)
C5—C1—C6—N2 −24.91 (18) C12—C11—C16—C15 −1.0 (2)
N2—N3—C7—C9 −179.40 (11) C10—C11—C16—C15 178.01 (12)
N2—N3—C7—C8 1.39 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2i 0.88 (2) 1.90 (2) 2.750 (2) 163 (2)
N3—H3···O2 0.90 (2) 1.91 (2) 2.607 (1) 133 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5158).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Bikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o193. [DOI] [PMC free article] [PubMed]
  4. Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000529/hg5158sup1.cif

e-68-0o412-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000529/hg5158Isup2.hkl

e-68-0o412-Isup2.hkl (137.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000529/hg5158Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES