Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 18;68(Pt 2):o435–o436. doi: 10.1107/S1600536812001249

Ethyl 1-(2,4-dichloro­benz­yl)-4-oxo-7-trifluoro­meth­yl-1,4-dihydro­quinoline-3-carboxyl­ate

Hoong-Kun Fun a,*,, Chin Wei Ooi a, B Garudachari b, Arun M Isloor b, Gurumurthy Hegde c
PMCID: PMC3275192  PMID: 22347048

Abstract

In the title compound, C20H14Cl2F3NO3, the trifluromethyl group is disordered over two sets of sites in a 0.784 (10):0.216 (10) ratio. The quinoline ring system is essentially planar with a maximum deviation of 0.058 (2) Å for the N atom and forms dihedral angles of 89.23 (11) and 8.13 (17)°, respectively with the mean planes of the benzene ring and the carboxyl­ate group. In the crystal, pairs of weak C—H⋯O and C—H⋯F hydrogen bonds link mol­ecules into centrosymmetric dimers. The crystal structure is further stabilized by weak π–π [centroid–centroid distance = 3.624 (2) Å] inter­actions.

Related literature

For background to the properties and uses of quinoline derivatives, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al. (2004); Shingalapur et al. (2009). For a related structure, see: Fun et al. (2011). For standard bond-length data, see: Allen et al. (1987).graphic file with name e-68-0o435-scheme1.jpg

Experimental

Crystal data

  • C20H14Cl2F3NO3

  • M r = 444.22

  • Triclinic, Inline graphic

  • a = 8.090 (2) Å

  • b = 9.547 (3) Å

  • c = 14.047 (4) Å

  • α = 77.299 (6)°

  • β = 76.198 (5)°

  • γ = 67.488 (4)°

  • V = 963.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 296 K

  • 0.43 × 0.18 × 0.07 mm

Data collection

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.852, T max = 0.972

  • 13916 measured reflections

  • 5071 independent reflections

  • 2759 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.179

  • S = 1.04

  • 5071 reflections

  • 288 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001249/lh5400sup1.cif

e-68-0o435-sup1.cif (29.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001249/lh5400Isup2.hkl

e-68-0o435-Isup2.hkl (248.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812001249/lh5400Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O3i 0.93 2.52 3.292 (5) 141
C18—H18A⋯F2i 0.97 2.50 3.355 (7) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Government and USM for the award of the post of research assistant under the Research University Grant (1001/PFIZIK/811151). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for the Young Scientist award.

supplementary crystallographic information

Comment

The quinoline moiety is of great importance to chemists as well as biologists as it is one of the key building elements for many naturally occurring compounds. Members of this family have wide range of applications as pharmaceuticals as antimalarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), antitumor (Chou et al., 2010), anticancer (Chen et al., 2004) and antiviral (Shingalapur et al., 2009) agents. Some of the present day drugs such as chloroquine, mefloquine, tafenoquine and primaquine contain quinoline as the basic unit in their structures. In view of the biological importance, we have synthesized the title compound to study its crystal structure.

In the molecular structure (Fig. 1), the trifluromethyl group is disordered over two sets of sites in a ratio of 0.784 (10):0.216 (10). The quinoline ring (N1/C1–C9) is essentially planar with a maximum deviation of 0.058 (2) Å at atom N1. The quinoline ring makes dihedral angles of 89.23 (11) and 8.13 (17)°, respectively with the chloro-substituted benzene ring (C11–C16) and the carboxylate group (O1/O2/C17–C19). The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011).

In the crystal (Fig. 2), intermolecular C16—H16A···O3i and C18—H18A···F2i hydrogen bonds (Table 1) link molecules to form dimers. The crystal is further stabilized by weak π–π interactions between the quinoline (N1/C1–C9) and the benzene ring (C4–C9) [centroid-to-centroid (-x, 1 - y, -z); distance = 3.624 (2) Å].

Experimental

A mixture of ethyl 4-hydroxy-7-(trifluoromethyl)quinoline-3-carboxylate (0.10 g, 0.00035 mol), potassium carbonate (0.053 g, 0.00038 mol) and 1-(bromomethyl)-2,4-dichlorobenzene (0.091 g, 0.00038 mol) in dimethylformamide (5 ml) was stirred at 353K for 3 h. After completion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered, washed with water and recrystallized using ethanol. Yield: 0.150 g, 96.77%. M. p.: 428–429 K.

Refinement

All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.93, 0.96 or 0.97 Å). A rotating group model was applied to the methyl group. In the final refinement, the outliners (-4 - 6 1), (3 2 0), (5 0 6), (5 1 8) were omitted. A bond-distance restraint was applied to C20A–C7. The same Uij parameters were used for atom pairs F3A/F1A and C20A/C7.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Both disorder components are shown.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. Only the major disordered component is shown.

Crystal data

C20H14Cl2F3NO3 Z = 2
Mr = 444.22 F(000) = 452
Triclinic, P1 Dx = 1.531 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.090 (2) Å Cell parameters from 3077 reflections
b = 9.547 (3) Å θ = 2.3–24.2°
c = 14.047 (4) Å µ = 0.39 mm1
α = 77.299 (6)° T = 296 K
β = 76.198 (5)° Block, colourless
γ = 67.488 (4)° 0.43 × 0.18 × 0.07 mm
V = 963.3 (5) Å3

Data collection

Bruker APEX DUO CCD area-detector diffractometer 5071 independent reflections
Radiation source: fine-focus sealed tube 2759 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 29.1°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→11
Tmin = 0.852, Tmax = 0.972 k = −13→13
13916 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.3522P] where P = (Fo2 + 2Fc2)/3
5071 reflections (Δ/σ)max < 0.001
288 parameters Δρmax = 0.35 e Å3
7 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 −0.33323 (10) 0.73631 (10) 0.39029 (6) 0.0780 (3)
Cl2 0.24014 (16) 0.66624 (13) 0.54781 (7) 0.1052 (4)
C20 0.1448 (11) 0.0460 (8) 0.2381 (6) 0.0900 (15) 0.784 (10)
F1 0.0710 (8) −0.0345 (4) 0.2048 (3) 0.1144 (17) 0.784 (10)
F2 0.2991 (6) −0.0610 (5) 0.2577 (5) 0.137 (2) 0.784 (10)
F3 0.0375 (13) 0.0915 (6) 0.3154 (4) 0.197 (5) 0.784 (10)
C20A 0.134 (3) 0.055 (2) 0.2391 (13) 0.0638 (7) 0.216 (10)
F1A 0.207 (3) −0.0777 (17) 0.2083 (14) 0.149 (7) 0.216 (10)
F2A 0.204 (2) 0.042 (2) 0.3172 (9) 0.103 (6) 0.216 (10)
F3A −0.026 (2) 0.078 (2) 0.2781 (19) 0.149 (7) 0.216 (10)
O1 0.3593 (3) 0.7747 (2) −0.19081 (13) 0.0747 (6)
O2 0.2188 (3) 0.9285 (2) −0.07639 (15) 0.0818 (6)
O3 0.4032 (4) 0.4757 (3) −0.14202 (17) 0.0992 (8)
N1 0.0638 (3) 0.5929 (2) 0.11707 (14) 0.0525 (5)
C1 0.1139 (3) 0.6989 (3) 0.04830 (18) 0.0538 (6)
H1A 0.0652 0.7997 0.0611 0.065*
C2 0.2309 (3) 0.6694 (3) −0.03871 (18) 0.0519 (6)
C3 0.3065 (4) 0.5147 (3) −0.0630 (2) 0.0614 (7)
C4 0.2558 (3) 0.4008 (3) 0.01455 (19) 0.0546 (6)
C5 0.3257 (4) 0.2471 (3) −0.0008 (2) 0.0668 (7)
H5A 0.4018 0.2206 −0.0600 0.080*
C6 0.2850 (4) 0.1353 (3) 0.0693 (2) 0.0726 (8)
H6A 0.3294 0.0344 0.0570 0.087*
C7 0.1763 (4) 0.1747 (3) 0.1588 (2) 0.0638 (7)
C8 0.1019 (4) 0.3237 (3) 0.1768 (2) 0.0580 (6)
H8A 0.0275 0.3481 0.2369 0.070*
C9 0.1394 (3) 0.4388 (3) 0.10383 (18) 0.0506 (6)
C10 −0.0705 (3) 0.6443 (3) 0.20509 (18) 0.0570 (6)
H10A −0.1461 0.5812 0.2247 0.068*
H10B −0.1484 0.7490 0.1876 0.068*
C11 0.0122 (3) 0.6370 (3) 0.29170 (17) 0.0497 (6)
C12 −0.0999 (3) 0.6848 (3) 0.37876 (18) 0.0546 (6)
C13 −0.0312 (4) 0.6930 (3) 0.4573 (2) 0.0692 (8)
H13A −0.1089 0.7262 0.5148 0.083*
C14 0.1529 (4) 0.6517 (3) 0.4499 (2) 0.0680 (8)
C15 0.2693 (4) 0.5999 (3) 0.3659 (2) 0.0651 (7)
H15A 0.3942 0.5695 0.3619 0.078*
C16 0.1983 (4) 0.5938 (3) 0.2878 (2) 0.0580 (6)
H16A 0.2769 0.5598 0.2307 0.070*
C17 0.2670 (3) 0.8046 (3) −0.10207 (19) 0.0566 (6)
C18 0.3971 (5) 0.9011 (3) −0.2582 (2) 0.0729 (8)
H18A 0.4611 0.9439 −0.2290 0.087*
H18B 0.2848 0.9811 −0.2730 0.087*
C19 0.5111 (6) 0.8397 (4) −0.3499 (2) 0.1007 (13)
H19A 0.5278 0.9226 −0.3993 0.151*
H19B 0.4521 0.7878 −0.3740 0.151*
H19C 0.6271 0.7691 −0.3356 0.151*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0572 (4) 0.0910 (6) 0.0667 (5) −0.0187 (4) 0.0125 (3) −0.0118 (4)
Cl2 0.1179 (8) 0.1260 (8) 0.0906 (7) −0.0464 (7) −0.0256 (6) −0.0378 (6)
C20 0.091 (4) 0.062 (3) 0.116 (4) −0.028 (3) −0.016 (3) −0.010 (3)
F1 0.120 (4) 0.097 (2) 0.156 (3) −0.073 (3) −0.038 (2) 0.003 (2)
F2 0.099 (3) 0.099 (3) 0.207 (5) −0.048 (2) −0.072 (3) 0.069 (3)
F3 0.325 (11) 0.088 (3) 0.129 (4) −0.094 (5) 0.092 (6) −0.020 (3)
C20A 0.0626 (17) 0.0525 (15) 0.0778 (19) −0.0208 (13) −0.0151 (14) −0.0079 (13)
F1A 0.096 (9) 0.116 (10) 0.226 (15) −0.066 (7) 0.006 (8) 0.010 (9)
F2A 0.083 (9) 0.145 (15) 0.076 (8) −0.057 (10) −0.038 (7) 0.053 (8)
F3A 0.096 (9) 0.116 (10) 0.226 (15) −0.066 (7) 0.006 (8) 0.010 (9)
O1 0.0975 (15) 0.0655 (12) 0.0540 (11) −0.0334 (11) 0.0120 (10) −0.0122 (9)
O2 0.1094 (17) 0.0645 (13) 0.0696 (13) −0.0377 (12) 0.0106 (12) −0.0200 (10)
O3 0.1143 (19) 0.0721 (14) 0.0803 (15) −0.0225 (13) 0.0394 (13) −0.0285 (12)
N1 0.0536 (12) 0.0498 (11) 0.0481 (11) −0.0138 (9) 0.0006 (9) −0.0124 (9)
C1 0.0558 (15) 0.0509 (14) 0.0526 (14) −0.0154 (11) −0.0049 (11) −0.0139 (11)
C2 0.0520 (14) 0.0529 (14) 0.0486 (13) −0.0178 (11) −0.0027 (11) −0.0103 (11)
C3 0.0539 (15) 0.0601 (16) 0.0569 (15) −0.0089 (12) 0.0025 (12) −0.0153 (12)
C4 0.0477 (13) 0.0523 (14) 0.0582 (15) −0.0091 (11) −0.0061 (11) −0.0153 (11)
C5 0.0615 (17) 0.0576 (16) 0.0692 (18) −0.0067 (13) −0.0025 (13) −0.0198 (14)
C6 0.0751 (19) 0.0515 (16) 0.087 (2) −0.0132 (14) −0.0137 (16) −0.0176 (15)
C7 0.0626 (17) 0.0525 (15) 0.0778 (19) −0.0208 (13) −0.0151 (14) −0.0079 (13)
C8 0.0548 (15) 0.0585 (16) 0.0601 (15) −0.0212 (12) −0.0063 (12) −0.0087 (12)
C9 0.0476 (13) 0.0481 (13) 0.0553 (14) −0.0139 (11) −0.0070 (11) −0.0131 (11)
C10 0.0511 (14) 0.0554 (14) 0.0551 (15) −0.0129 (11) 0.0065 (11) −0.0168 (12)
C11 0.0544 (14) 0.0411 (12) 0.0491 (13) −0.0184 (10) 0.0034 (10) −0.0076 (10)
C12 0.0558 (14) 0.0498 (14) 0.0491 (14) −0.0196 (11) 0.0069 (11) −0.0039 (11)
C13 0.078 (2) 0.0700 (18) 0.0518 (16) −0.0258 (15) 0.0095 (14) −0.0156 (13)
C14 0.081 (2) 0.0682 (18) 0.0591 (16) −0.0310 (16) −0.0091 (15) −0.0132 (14)
C15 0.0621 (17) 0.0616 (17) 0.0757 (19) −0.0261 (14) −0.0078 (14) −0.0140 (14)
C16 0.0562 (15) 0.0569 (15) 0.0578 (15) −0.0208 (12) 0.0045 (12) −0.0156 (12)
C17 0.0541 (15) 0.0618 (16) 0.0529 (14) −0.0210 (12) −0.0026 (11) −0.0119 (12)
C18 0.084 (2) 0.0724 (19) 0.0620 (17) −0.0388 (16) 0.0061 (15) −0.0073 (14)
C19 0.137 (3) 0.100 (3) 0.064 (2) −0.058 (3) 0.023 (2) −0.0218 (18)

Geometric parameters (Å, °)

Cl1—C12 1.735 (3) C5—H5A 0.9300
Cl2—C14 1.741 (3) C6—C7 1.388 (4)
C20—F3 1.262 (8) C6—H6A 0.9300
C20—F2 1.320 (7) C7—C8 1.371 (4)
C20—F1 1.344 (8) C8—C9 1.401 (4)
C20—C7 1.522 (8) C8—H8A 0.9300
C20A—F3A 1.235 (16) C10—C11 1.499 (4)
C20A—F1A 1.303 (16) C10—H10A 0.9700
C20A—F2A 1.311 (16) C10—H10B 0.9700
C20A—C7 1.494 (17) C11—C12 1.387 (3)
O1—C17 1.320 (3) C11—C16 1.391 (4)
O1—C18 1.445 (3) C12—C13 1.377 (4)
O2—C17 1.204 (3) C13—C14 1.371 (4)
O3—C3 1.236 (3) C13—H13A 0.9300
N1—C1 1.349 (3) C14—C15 1.376 (4)
N1—C9 1.396 (3) C15—C16 1.375 (4)
N1—C10 1.472 (3) C15—H15A 0.9300
C1—C2 1.365 (3) C16—H16A 0.9300
C1—H1A 0.9300 C18—C19 1.485 (4)
C2—C3 1.450 (4) C18—H18A 0.9700
C2—C17 1.484 (4) C18—H18B 0.9700
C3—C4 1.465 (4) C19—H19A 0.9600
C4—C5 1.401 (4) C19—H19B 0.9600
C4—C9 1.402 (3) C19—H19C 0.9600
C5—C6 1.367 (4)
F3—C20—F2 112.3 (8) N1—C9—C8 121.8 (2)
F3—C20—F1 105.5 (6) N1—C9—C4 118.2 (2)
F2—C20—F1 101.2 (6) C8—C9—C4 120.1 (2)
F3—C20—C7 113.9 (6) N1—C10—C11 113.9 (2)
F2—C20—C7 111.8 (6) N1—C10—H10A 108.8
F1—C20—C7 111.2 (6) C11—C10—H10A 108.8
F3A—C20A—F1A 110.4 (17) N1—C10—H10B 108.8
F3A—C20A—F2A 99.9 (16) C11—C10—H10B 108.8
F1A—C20A—F2A 106.3 (18) H10A—C10—H10B 107.7
F3A—C20A—C7 118.3 (17) C12—C11—C16 117.1 (2)
F1A—C20A—C7 109.6 (14) C12—C11—C10 119.6 (2)
F2A—C20A—C7 111.4 (13) C16—C11—C10 123.2 (2)
C17—O1—C18 116.3 (2) C13—C12—C11 121.8 (3)
C1—N1—C9 120.0 (2) C13—C12—Cl1 118.4 (2)
C1—N1—C10 118.3 (2) C11—C12—Cl1 119.8 (2)
C9—N1—C10 121.7 (2) C14—C13—C12 119.3 (3)
N1—C1—C2 124.9 (2) C14—C13—H13A 120.3
N1—C1—H1A 117.6 C12—C13—H13A 120.3
C2—C1—H1A 117.6 C13—C14—C15 120.8 (3)
C1—C2—C3 119.4 (2) C13—C14—Cl2 119.5 (2)
C1—C2—C17 115.1 (2) C15—C14—Cl2 119.7 (3)
C3—C2—C17 125.5 (2) C16—C15—C14 119.1 (3)
O3—C3—C2 125.5 (3) C16—C15—H15A 120.4
O3—C3—C4 120.0 (2) C14—C15—H15A 120.4
C2—C3—C4 114.5 (2) C15—C16—C11 121.8 (2)
C5—C4—C9 118.3 (2) C15—C16—H16A 119.1
C5—C4—C3 118.9 (2) C11—C16—H16A 119.1
C9—C4—C3 122.8 (2) O2—C17—O1 122.9 (2)
C6—C5—C4 121.6 (3) O2—C17—C2 124.4 (2)
C6—C5—H5A 119.2 O1—C17—C2 112.6 (2)
C4—C5—H5A 119.2 O1—C18—C19 107.1 (3)
C5—C6—C7 119.0 (3) O1—C18—H18A 110.3
C5—C6—H6A 120.5 C19—C18—H18A 110.3
C7—C6—H6A 120.5 O1—C18—H18B 110.3
C8—C7—C6 121.6 (3) C19—C18—H18B 110.3
C8—C7—C20A 117.5 (8) H18A—C18—H18B 108.6
C6—C7—C20A 120.9 (8) C18—C19—H19A 109.5
C8—C7—C20 120.7 (4) C18—C19—H19B 109.5
C6—C7—C20 117.7 (4) H19A—C19—H19B 109.5
C7—C8—C9 119.3 (3) C18—C19—H19C 109.5
C7—C8—H8A 120.4 H19A—C19—H19C 109.5
C9—C8—H8A 120.4 H19B—C19—H19C 109.5
C9—N1—C1—C2 3.1 (4) C20A—C7—C8—C9 179.4 (8)
C10—N1—C1—C2 −177.2 (2) C20—C7—C8—C9 177.5 (4)
N1—C1—C2—C3 1.6 (4) C1—N1—C9—C8 174.9 (2)
N1—C1—C2—C17 −179.3 (2) C10—N1—C9—C8 −4.8 (4)
C1—C2—C3—O3 174.7 (3) C1—N1—C9—C4 −5.0 (4)
C17—C2—C3—O3 −4.3 (5) C10—N1—C9—C4 175.2 (2)
C1—C2—C3—C4 −3.8 (4) C7—C8—C9—N1 178.3 (2)
C17—C2—C3—C4 177.2 (2) C7—C8—C9—C4 −1.7 (4)
O3—C3—C4—C5 3.0 (4) C5—C4—C9—N1 −177.3 (2)
C2—C3—C4—C5 −178.4 (3) C3—C4—C9—N1 2.6 (4)
O3—C3—C4—C9 −176.8 (3) C5—C4—C9—C8 2.7 (4)
C2—C3—C4—C9 1.8 (4) C3—C4—C9—C8 −177.4 (2)
C9—C4—C5—C6 −0.8 (4) C1—N1—C10—C11 −93.1 (3)
C3—C4—C5—C6 179.3 (3) C9—N1—C10—C11 86.7 (3)
C4—C5—C6—C7 −2.1 (5) N1—C10—C11—C12 178.9 (2)
C5—C6—C7—C8 3.2 (5) N1—C10—C11—C16 3.4 (3)
C5—C6—C7—C20A −177.6 (8) C16—C11—C12—C13 1.6 (4)
C5—C6—C7—C20 −175.6 (4) C10—C11—C12—C13 −174.2 (2)
F3A—C20A—C7—C8 49 (2) C16—C11—C12—Cl1 −178.55 (18)
F1A—C20A—C7—C8 176.8 (13) C10—C11—C12—Cl1 5.6 (3)
F2A—C20A—C7—C8 −65.8 (19) C11—C12—C13—C14 −0.6 (4)
F3A—C20A—C7—C6 −130.1 (17) Cl1—C12—C13—C14 179.5 (2)
F1A—C20A—C7—C6 −2.5 (18) C12—C13—C14—C15 −1.1 (4)
F2A—C20A—C7—C6 114.9 (15) C12—C13—C14—Cl2 178.5 (2)
F3A—C20A—C7—C20 −159 (16) C13—C14—C15—C16 1.7 (4)
F1A—C20A—C7—C20 −31 (14) Cl2—C14—C15—C16 −177.9 (2)
F2A—C20A—C7—C20 86 (15) C14—C15—C16—C11 −0.7 (4)
F3—C20—C7—C8 4.5 (8) C12—C11—C16—C15 −0.9 (4)
F2—C20—C7—C8 −124.1 (6) C10—C11—C16—C15 174.7 (2)
F1—C20—C7—C8 123.6 (6) C18—O1—C17—O2 −1.4 (4)
F3—C20—C7—C6 −176.7 (6) C18—O1—C17—C2 178.7 (2)
F2—C20—C7—C6 54.7 (8) C1—C2—C17—O2 9.3 (4)
F1—C20—C7—C6 −57.6 (8) C3—C2—C17—O2 −171.8 (3)
F3—C20—C7—C20A −24 (14) C1—C2—C17—O1 −170.9 (2)
F2—C20—C7—C20A −153 (15) C3—C2—C17—O1 8.1 (4)
F1—C20—C7—C20A 95 (15) C17—O1—C18—C19 176.4 (3)
C6—C7—C8—C9 −1.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C16—H16A···O3i 0.93 2.52 3.292 (5) 141
C18—H18A···F2i 0.97 2.50 3.355 (7) 147

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5400).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539–6546. [DOI] [PubMed]
  4. Chou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047–8058. [DOI] [PubMed]
  5. Eswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374–3383. [DOI] [PubMed]
  6. Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o3117–o3118. [DOI] [PMC free article] [PubMed]
  7. Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001249/lh5400sup1.cif

e-68-0o435-sup1.cif (29.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001249/lh5400Isup2.hkl

e-68-0o435-Isup2.hkl (248.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812001249/lh5400Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES