Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 18;68(Pt 2):o446. doi: 10.1107/S1600536811054985

Gliclazide impurity F: N-[(perhydro­cyclo­penta­[c]pyrrol-2-yl)amino­carbon­yl]-o-toluene­sulfonamide

Di Wu a, Xueyuan Wang b, Dongying Pang b, Wei Su c,*, Yan Sun c
PMCID: PMC3275201  PMID: 22347057

Abstract

The title compound, C15H21N3O3S, is known to be an impurity of gliclazide [systematic name: N-(hexa­hydro-1H-cyclopenta[c]pyrrol-2-ylcarbamo­yl)-4-methyl­benzene­sulfonamide], a sul­fonyl­urea anti­diabetic drug. Gliclazide has a p-tolyl group substituting the sulfonamide functionality, while the title mol­ecule contains an o-tolyl group. Both five-membered fused rings adopt envelope conformations. In the crystal, N—H⋯O hydrogen bonds are formed between HN(C=O)NH groups, building centrosymmetric dimers. These dimers are further linked through N—H⋯O(sulfon­yl) contacts, forming chains in [100].

Related literature

For general background to gliclazide and the impurities of gliclazide, see: Lebovitz & Feinglos (1983). For the crystal structure of gliclazide, see: Parvez et al. (1999); Winters et al. (1994).graphic file with name e-68-0o446-scheme1.jpg

Experimental

Crystal data

  • C15H21N3O3S

  • M r = 323.41

  • Monoclinic, Inline graphic

  • a = 10.891 (7) Å

  • b = 11.226 (7) Å

  • c = 13.477 (9) Å

  • β = 95.509 (9)°

  • V = 1640.2 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection

  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) T min = 0.959, T max = 0.979

  • 16805 measured reflections

  • 3904 independent reflections

  • 3461 reflections with I > 2σ(I)

  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.113

  • S = 1.04

  • 3904 reflections

  • 208 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054985/bh2389sup1.cif

e-68-0o446-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054985/bh2389Isup2.hkl

e-68-0o446-Isup2.hkl (191.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054985/bh2389Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.90 (1) 1.92 (1) 2.820 (2) 177 (2)
N1—H1⋯O2ii 0.89 (1) 2.23 (1) 3.077 (2) 158 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This study was supported by the Tianjin Natural Science Foundation (10JCZDJC23900).

supplementary crystallographic information

Comment

Gliclazide Impurity F is one of the gliclazide impurities, as described in the European Pharmacopoeia. Gliclazide is a second-generation sulfonylurea oral hypoglycemic agent, which can reduce blood sugar and improve blood clotting function (Lebovitz & Feinglos, 1983). It not only can improve the metabolism of diabetic patients, but also improve or delay the incidence of vascular complications of diabetes.

The reason for the existence of this impurity is mainly due to the generation of ortho-isomeride during the production process of raw material, 4-methylphenylsulfonylurea or ethyl-[(4-methylphenyl)sulfonyl]carbamate. In the liquid chromatography separation experiments, the ortho gliclazide derivative has frequently been used as working sample. In this paper, we report the crystal structure of this compound.

The molecular structure is shown in Fig. 1. Molecular dimensions are within the normal ranges. The similar corresponding bond distances and angles have been reported in structure of gliclazide (Parvez et al., 1999; Winters et al., 1994). The methyl position of toluenesulfonyl moiety is the important difference between the two structures. The mean bond distances in the o-toluenesulfonyl moiety are C—Caromatic = 1.507 (2), S=O = 1.4354 (14), Csp2-Csp2=1.394 (3) and S—Csp2 = 1.7690 (18) Å, the aromatic ring being essentially planar. The mean values of the bond distances in the perhydrocyclopenta[c]pyrrole moiety in the title compound are Csp3-Csp3 =1.536 (3) and Csp3-N=1.473 (2) Å. The pyrrole (N3, C9, C10, C14, C15) ring and the fused five-membered cyclopentane (C10···C14) adopt N3- and C12- envelope conformations, respectively, with N3 0.624 and C12 0.611Å out of the planes of the remaining atoms of the corresponding rings.

The molecules are linked into dimers by intermolecular hydrogen bonds involving amino H-atoms. Intermolecular contacts between symmetry-related dimers form chains in the [100] direction.

Experimental

A 1000 ml reactor fitted with an electric heater in the bottom, a mechanical stirrer, a thermometer and a condenser was loaded with urea (100 g) and sodium hydroxide (5 g). Slow heating and addition of o-toluenesulfonamide (48 g) after the reactants changed the mixture to the molten state. When the reaction was completed after 6 h, water and hydrochloric acid were added until pH = 7. After filtering, draining and vacuum drying, the o-toluene sulfonylurea was obtained (yield 90%). The o-toluene sulfonylurea was added to the equal amount of azolidine hydrochloride in acetonitrile under reflux for 6 h. Then, the desired products were obtained after cooling down, and filtered (yield 86%). Finally, the products were recrystallized from methanol.

Refinement

H atoms were positioned geometrically, with C—H bond lengths fixed to 0.95 (aromatic CH), 0.98 (methyl CH3), 0.99 (methylene CH2) or 1.00 Å (methine CH), and constrained to ride on their parent atoms. H atoms bonded to N1 and N2 were refined freely, with N—H bond lengths restrained to 0.90 (1) Å. For all H atoms, isotropic displacement parameters were calculated as Uiso(H) = xUeq(carrier atom), where x = 1.2 or 1.5.

Figures

Fig. 1.

Fig. 1.

The title molecule with displacement ellipsoids for non-H atoms at the 50% probability level.

Crystal data

C15H21N3O3S F(000) = 688
Mr = 323.41 Dx = 1.310 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5900 reflections
a = 10.891 (7) Å θ = 1.5–27.9°
b = 11.226 (7) Å µ = 0.21 mm1
c = 13.477 (9) Å T = 113 K
β = 95.509 (9)° Prism, colourless
V = 1640.2 (18) Å3 0.20 × 0.18 × 0.10 mm
Z = 4

Data collection

Rigaku Saturn724 CCD diffractometer 3904 independent reflections
Radiation source: rotating anode 3461 reflections with I > 2σ(I)
multilayer Rint = 0.070
Detector resolution: 14.22 pixels mm-1 θmax = 27.9°, θmin = 1.9°
ω and φ scans h = −14→14
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) k = −14→13
Tmin = 0.959, Tmax = 0.979 l = −17→17
16805 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.7703P] where P = (Fo2 + 2Fc2)/3
3904 reflections (Δ/σ)max = 0.002
208 parameters Δρmax = 0.30 e Å3
3 restraints Δρmin = −0.51 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.88574 (3) 0.63900 (3) 1.09521 (2) 0.01593 (11)
O1 0.83163 (10) 0.75502 (10) 1.08708 (8) 0.0226 (2)
O2 1.01217 (9) 0.62502 (10) 1.07406 (8) 0.0209 (2)
O3 0.62260 (9) 0.57766 (10) 1.07603 (8) 0.0205 (2)
N1 0.80984 (11) 0.54879 (12) 1.01545 (9) 0.0174 (3)
N2 0.63131 (12) 0.47495 (13) 0.93204 (9) 0.0222 (3)
N3 0.69959 (11) 0.44335 (12) 0.85221 (9) 0.0179 (3)
C1 1.01300 (15) 0.40745 (16) 1.19750 (12) 0.0251 (3)
H1A 0.9694 0.3882 1.1324 0.038*
H1B 1.0329 0.3337 1.2345 0.038*
H1C 1.0893 0.4503 1.1879 0.038*
C2 0.93199 (14) 0.48450 (14) 1.25551 (11) 0.0190 (3)
C3 0.91819 (16) 0.45650 (16) 1.35526 (12) 0.0250 (3)
H3 0.9612 0.3899 1.3850 0.030*
C4 0.84335 (16) 0.52348 (17) 1.41160 (12) 0.0288 (4)
H4 0.8377 0.5035 1.4795 0.035*
C5 0.77680 (16) 0.61910 (17) 1.36998 (12) 0.0266 (4)
H5 0.7238 0.6632 1.4083 0.032*
C6 0.78836 (15) 0.64984 (15) 1.27155 (11) 0.0211 (3)
H6 0.7428 0.7150 1.2420 0.025*
C7 0.86715 (13) 0.58463 (14) 1.21606 (10) 0.0165 (3)
C8 0.68259 (13) 0.53668 (14) 1.01056 (10) 0.0169 (3)
C9 0.70155 (15) 0.31371 (15) 0.83580 (12) 0.0235 (3)
H9A 0.6184 0.2788 0.8382 0.028*
H9B 0.7598 0.2739 0.8862 0.028*
C10 0.74462 (16) 0.30259 (17) 0.73176 (13) 0.0289 (4)
H10 0.8364 0.2946 0.7354 0.035*
C11 0.68091 (18) 0.20163 (19) 0.66902 (16) 0.0389 (5)
H11A 0.7340 0.1726 0.6185 0.047*
H11B 0.6607 0.1341 0.7118 0.047*
C12 0.56419 (18) 0.25961 (19) 0.61967 (14) 0.0358 (4)
H12A 0.5304 0.2138 0.5605 0.043*
H12B 0.5003 0.2661 0.6669 0.043*
C13 0.6079 (2) 0.3821 (2) 0.58998 (13) 0.0386 (5)
H13A 0.5380 0.4386 0.5806 0.046*
H13B 0.6484 0.3777 0.5274 0.046*
C14 0.70093 (17) 0.42092 (17) 0.67816 (12) 0.0294 (4)
H14 0.7720 0.4652 0.6541 0.035*
C15 0.64125 (16) 0.49198 (16) 0.75762 (11) 0.0238 (3)
H15A 0.6586 0.5782 0.7520 0.029*
H15B 0.5508 0.4797 0.7519 0.029*
H1 0.8539 (17) 0.5085 (18) 0.9741 (13) 0.038 (6)*
H2 0.5498 (9) 0.4609 (18) 0.9291 (15) 0.031 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01388 (18) 0.0184 (2) 0.01533 (18) −0.00225 (13) 0.00034 (13) 0.00038 (12)
O1 0.0254 (6) 0.0186 (6) 0.0233 (5) −0.0009 (5) −0.0007 (4) 0.0021 (4)
O2 0.0125 (5) 0.0291 (6) 0.0212 (5) −0.0041 (4) 0.0017 (4) 0.0003 (4)
O3 0.0147 (5) 0.0292 (6) 0.0180 (5) 0.0003 (4) 0.0028 (4) −0.0054 (4)
N1 0.0125 (6) 0.0234 (7) 0.0162 (6) −0.0016 (5) 0.0014 (4) −0.0045 (5)
N2 0.0130 (6) 0.0359 (8) 0.0181 (6) −0.0031 (5) 0.0037 (5) −0.0082 (5)
N3 0.0158 (6) 0.0229 (7) 0.0155 (6) −0.0003 (5) 0.0036 (5) −0.0040 (5)
C1 0.0235 (8) 0.0263 (9) 0.0257 (8) 0.0063 (7) 0.0045 (6) 0.0044 (6)
C2 0.0158 (7) 0.0215 (8) 0.0192 (7) −0.0010 (6) −0.0007 (5) 0.0007 (6)
C3 0.0256 (8) 0.0292 (9) 0.0199 (7) 0.0010 (7) −0.0005 (6) 0.0062 (6)
C4 0.0303 (9) 0.0399 (11) 0.0163 (7) −0.0038 (8) 0.0029 (6) 0.0014 (7)
C5 0.0245 (8) 0.0366 (10) 0.0192 (7) 0.0001 (7) 0.0043 (6) −0.0064 (7)
C6 0.0193 (7) 0.0225 (8) 0.0212 (7) 0.0002 (6) 0.0008 (6) −0.0034 (6)
C7 0.0148 (6) 0.0188 (7) 0.0153 (6) −0.0038 (6) −0.0011 (5) −0.0012 (5)
C8 0.0138 (6) 0.0204 (8) 0.0165 (6) −0.0002 (6) 0.0018 (5) 0.0003 (5)
C9 0.0210 (7) 0.0224 (8) 0.0265 (8) 0.0013 (6) −0.0010 (6) −0.0019 (6)
C10 0.0202 (7) 0.0357 (10) 0.0308 (9) 0.0020 (7) 0.0027 (6) −0.0136 (7)
C11 0.0335 (10) 0.0372 (11) 0.0447 (11) 0.0047 (8) −0.0033 (8) −0.0228 (9)
C12 0.0309 (9) 0.0407 (11) 0.0347 (9) −0.0030 (8) −0.0015 (7) −0.0179 (8)
C13 0.0440 (11) 0.0524 (13) 0.0187 (8) −0.0078 (10) 0.0001 (7) −0.0064 (8)
C14 0.0323 (9) 0.0363 (10) 0.0204 (7) −0.0092 (8) 0.0070 (7) −0.0059 (7)
C15 0.0295 (8) 0.0234 (9) 0.0181 (7) −0.0013 (7) −0.0002 (6) −0.0003 (6)

Geometric parameters (Å, °)

S1—O1 1.4295 (14) C5—H5 0.9500
S1—O2 1.4413 (14) C6—C7 1.398 (2)
S1—N1 1.6413 (14) C6—H6 0.9500
S1—C7 1.7690 (18) C9—C10 1.526 (2)
O3—C8 1.2360 (18) C9—H9A 0.9900
N1—C8 1.388 (2) C9—H9B 0.9900
N1—H1 0.893 (7) C10—C11 1.539 (2)
N2—C8 1.341 (2) C10—C14 1.564 (3)
N2—N3 1.4107 (17) C10—H10 1.0000
N2—H2 0.898 (9) C11—C12 1.523 (3)
N3—C9 1.473 (2) C11—H11A 0.9900
N3—C15 1.474 (2) C11—H11B 0.9900
C1—C2 1.507 (2) C12—C13 1.521 (3)
C1—H1A 0.9800 C12—H12A 0.9900
C1—H1B 0.9800 C12—H12B 0.9900
C1—H1C 0.9800 C13—C14 1.548 (3)
C2—C3 1.403 (2) C13—H13A 0.9900
C2—C7 1.405 (2) C13—H13B 0.9900
C3—C4 1.388 (2) C14—C15 1.529 (2)
C3—H3 0.9500 C14—H14 1.0000
C4—C5 1.384 (3) C15—H15A 0.9900
C4—H4 0.9500 C15—H15B 0.9900
C5—C6 1.388 (2)
O1—S1—O2 118.60 (7) N3—C9—C10 103.24 (13)
O1—S1—N1 109.51 (8) N3—C9—H9A 111.1
O2—S1—N1 103.53 (7) C10—C9—H9A 111.1
O1—S1—C7 107.59 (7) N3—C9—H9B 111.1
O2—S1—C7 109.91 (7) C10—C9—H9B 111.1
N1—S1—C7 107.17 (8) H9A—C9—H9B 109.1
C8—N1—S1 121.96 (10) C9—C10—C11 113.77 (16)
C8—N1—H1 121.0 (14) C9—C10—C14 104.37 (13)
S1—N1—H1 117.1 (14) C11—C10—C14 105.70 (15)
C8—N2—N3 121.44 (13) C9—C10—H10 110.9
C8—N2—H2 117.4 (13) C11—C10—H10 110.9
N3—N2—H2 120.9 (13) C14—C10—H10 110.9
N2—N3—C9 112.29 (12) C12—C11—C10 103.80 (16)
N2—N3—C15 110.58 (13) C12—C11—H11A 111.0
C9—N3—C15 104.33 (12) C10—C11—H11A 111.0
C2—C1—H1A 109.5 C12—C11—H11B 111.0
C2—C1—H1B 109.5 C10—C11—H11B 111.0
H1A—C1—H1B 109.5 H11A—C11—H11B 109.0
C2—C1—H1C 109.5 C13—C12—C11 103.40 (17)
H1A—C1—H1C 109.5 C13—C12—H12A 111.1
H1B—C1—H1C 109.5 C11—C12—H12A 111.1
C3—C2—C7 116.48 (14) C13—C12—H12B 111.1
C3—C2—C1 119.38 (15) C11—C12—H12B 111.1
C7—C2—C1 124.14 (14) H12A—C12—H12B 109.0
C4—C3—C2 121.70 (16) C12—C13—C14 104.54 (16)
C4—C3—H3 119.1 C12—C13—H13A 110.8
C2—C3—H3 119.1 C14—C13—H13A 110.8
C5—C4—C3 120.74 (15) C12—C13—H13B 110.8
C5—C4—H4 119.6 C14—C13—H13B 110.8
C3—C4—H4 119.6 H13A—C13—H13B 108.9
C4—C5—C6 119.22 (15) C15—C14—C13 113.18 (16)
C4—C5—H5 120.4 C15—C14—C10 104.51 (14)
C6—C5—H5 120.4 C13—C14—C10 105.24 (16)
C5—C6—C7 119.84 (16) C15—C14—H14 111.2
C5—C6—H6 120.1 C13—C14—H14 111.2
C7—C6—H6 120.1 C10—C14—H14 111.2
C6—C7—C2 121.92 (14) N3—C15—C14 103.62 (14)
C6—C7—S1 116.24 (12) N3—C15—H15A 111.0
C2—C7—S1 121.79 (11) C14—C15—H15A 111.0
O3—C8—N2 123.16 (14) N3—C15—H15B 111.0
O3—C8—N1 121.58 (14) C14—C15—H15B 111.0
N2—C8—N1 115.24 (13) H15A—C15—H15B 109.0
O1—S1—N1—C8 −51.88 (14) N3—N2—C8—O3 171.41 (14)
O2—S1—N1—C8 −179.30 (12) N3—N2—C8—N1 −10.5 (2)
C7—S1—N1—C8 64.54 (14) S1—N1—C8—O3 −12.1 (2)
C8—N2—N3—C9 122.19 (16) S1—N1—C8—N2 169.83 (12)
C8—N2—N3—C15 −121.73 (16) N2—N3—C9—C10 163.97 (12)
C7—C2—C3—C4 0.7 (2) C15—N3—C9—C10 44.19 (15)
C1—C2—C3—C4 −179.07 (16) N3—C9—C10—C11 −142.41 (15)
C2—C3—C4—C5 1.7 (3) N3—C9—C10—C14 −27.70 (16)
C3—C4—C5—C6 −1.9 (3) C9—C10—C11—C12 87.0 (2)
C4—C5—C6—C7 −0.3 (2) C14—C10—C11—C12 −26.96 (19)
C5—C6—C7—C2 2.8 (2) C10—C11—C12—C13 41.04 (19)
C5—C6—C7—S1 −174.57 (12) C11—C12—C13—C14 −39.17 (19)
C3—C2—C7—C6 −2.9 (2) C12—C13—C14—C15 −91.52 (19)
C1—C2—C7—C6 176.81 (15) C12—C13—C14—C10 22.00 (19)
C3—C2—C7—S1 174.32 (12) C9—C10—C14—C15 2.29 (17)
C1—C2—C7—S1 −5.9 (2) C11—C10—C14—C15 122.56 (15)
O1—S1—C7—C6 10.97 (14) C9—C10—C14—C13 −117.18 (15)
O2—S1—C7—C6 141.43 (12) C11—C10—C14—C13 3.09 (18)
N1—S1—C7—C6 −106.71 (13) N2—N3—C15—C14 −163.62 (13)
O1—S1—C7—C2 −166.44 (12) C9—N3—C15—C14 −42.68 (16)
O2—S1—C7—C2 −35.98 (14) C13—C14—C15—N3 137.91 (16)
N1—S1—C7—C2 75.88 (14) C10—C14—C15—N3 23.94 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3i 0.90 (1) 1.92 (1) 2.820 (2) 177 (2)
N1—H1···O2ii 0.89 (1) 2.23 (1) 3.077 (2) 158 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2389).

References

  1. Lebovitz, H. E. & Feinglos, M. N. (1983). Diabetes Mellitus: Theory and Practices, 3rd ed., edited by M. Ellenberg & H. Rifkin, pp. 591–610. New York: Medical Examination Publishing.
  2. Parvez, M., Arayne, M. S., Zaman, M. K. & Sultana, N. (1999). Acta Cryst. C55, 74–75. [DOI] [PubMed]
  3. Rigaku/MSC (2002). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  4. Rigaku/MSC (2006). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Winters, C., Shields, L., Timmins, P. & York, P. (1994). J. Pharm. Sci. 83, 300–304. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054985/bh2389sup1.cif

e-68-0o446-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054985/bh2389Isup2.hkl

e-68-0o446-Isup2.hkl (191.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054985/bh2389Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES