Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 18;68(Pt 2):o457. doi: 10.1107/S1600536812000748

2-Cyano-N,N-dimethyl­acetamide

Shan Liu a,*, Hong-Jun Zhu b, Guo-Quan Yu c, Gang Du c, Liang-Zhong Lv c
PMCID: PMC3275212  PMID: 22347068

Abstract

In the crystal structure of the title compound, C5H8N2O, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For uses of 2-cyano-N, N-dimethyl­acetamide, see: Liu et al. (2011). For the synthesis, see: Liu et al. (2011). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-0o457-scheme1.jpg

Experimental

Crystal data

  • C5H8N2O

  • M r = 112.13

  • Monoclinic, Inline graphic

  • a = 4.1690 (8) Å

  • b = 9.3940 (19) Å

  • c = 15.880 (3) Å

  • β = 92.67 (3)°

  • V = 621.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.975, T max = 0.991

  • 1294 measured reflections

  • 1129 independent reflections

  • 666 reflections with I > 2σ(I)

  • R int = 0.051

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.167

  • S = 1.01

  • 1129 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software ; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global, n1. DOI: 10.1107/S1600536812000748/lx2222sup1.cif

e-68-0o457-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000748/lx2222Isup2.hkl

e-68-0o457-Isup2.hkl (55.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000748/lx2222Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯Oi 0.97 2.38 3.300 (3) 159
C4—H4B⋯Oii 0.97 2.41 3.141 (3) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

2-Cyano-N, N-dimethylacetamide is an important intermediate used to synthesize the herbicide of nicosulfuron (Liu et al., 2011). We report here the crystal structure of the title compound (Fig. 1).

In the title molecule, bond lengths (Allen et al. , 1987) and angles are within normal ranges. In the crystal packing (Fig. 2), molecules are linked by weak intermolecular C–H···O hydrogen bonds (see, Table 1).

Experimental

2-Cyano-N,N-dimethylacetamide was prepared by the method reported in literature (Liu et al., 2011). Single crystals were obtained by dissolving 2-Cyano-N, N-dimethylacetamide (0.50 g, 4.46 mmol) in ethyl acetate (30 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement

H atoms were positioned geometrically, with O–H = 0.82 and C–H = 0.93Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C–H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmter codes: (i) - x + 1, y + 1/2 , - z + 1/2; (ii) - x, y + 1/2, - z + 1/2; (iii) - x + 1, y - 1/2, - z + 1/2; (iv) - x , y -1/2, - z -1/2.]

Crystal data

C5H8N2O F(000) = 240
Mr = 112.13 Dx = 1.199 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 4.1690 (8) Å θ = 9–13°
b = 9.3940 (19) Å µ = 0.09 mm1
c = 15.880 (3) Å T = 298 K
β = 92.67 (3)° Block, brown
V = 621.2 (2) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 666 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.051
graphite θmax = 25.4°, θmin = 2.5°
ω/2θ scans h = 0→5
Absorption correction: ψ scan (North et al., 1968) k = 0→11
Tmin = 0.975, Tmax = 0.991 l = −19→19
1294 measured reflections 3 standard reflections every 200 reflections
1129 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: difference Fourier map
wR(F2) = 0.167 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.09P)2 + 0.P] where P = (Fo2 + 2Fc2)/3
1129 reflections (Δ/σ)max < 0.001
73 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O 0.2785 (4) 0.08459 (15) 0.22552 (10) 0.0789 (6)
C4 0.1898 (6) 0.3244 (2) 0.26152 (15) 0.0703 (7)
H4A 0.3718 0.3851 0.2766 0.084*
H4B 0.0286 0.3824 0.2319 0.084*
C3 0.2962 (6) 0.2083 (2) 0.20353 (15) 0.0617 (6)
N1 0.4071 (5) 0.2461 (2) 0.13046 (13) 0.0747 (7)
C5 0.0598 (7) 0.2697 (3) 0.33702 (18) 0.0758 (8)
C2 0.5089 (8) 0.1366 (3) 0.07292 (18) 0.0956 (9)
H2A 0.4964 0.0451 0.0995 0.143*
H2B 0.7263 0.1545 0.0585 0.143*
H2C 0.3715 0.1378 0.0227 0.143*
N2 −0.0412 (8) 0.2295 (3) 0.39639 (19) 0.1157 (10)
C1 0.4201 (9) 0.3936 (3) 0.09947 (19) 0.1010 (11)
H1A 0.3514 0.4574 0.1423 0.151*
H1B 0.2812 0.4033 0.0499 0.151*
H1C 0.6363 0.4163 0.0860 0.151*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O 0.1110 (14) 0.0480 (10) 0.0791 (12) −0.0014 (10) 0.0192 (10) 0.0048 (8)
C4 0.0821 (16) 0.0537 (14) 0.0757 (17) 0.0009 (13) 0.0097 (13) −0.0052 (11)
C3 0.0797 (16) 0.0448 (12) 0.0604 (14) −0.0005 (12) 0.0003 (11) 0.0023 (10)
N1 0.1086 (18) 0.0552 (11) 0.0609 (12) −0.0038 (12) 0.0102 (11) 0.0037 (9)
C5 0.0924 (18) 0.0651 (15) 0.0708 (18) −0.0047 (15) 0.0125 (14) −0.0105 (13)
C2 0.128 (2) 0.093 (2) 0.0672 (17) 0.0092 (19) 0.0192 (16) −0.0067 (15)
N2 0.141 (2) 0.116 (2) 0.094 (2) −0.0157 (19) 0.0406 (18) −0.0064 (17)
C1 0.157 (3) 0.0709 (17) 0.0753 (19) −0.015 (2) 0.0080 (18) 0.0182 (14)

Geometric parameters (Å, °)

O—C3 1.217 (2) C5—N2 1.116 (3)
C4—C5 1.434 (4) C2—H2A 0.9600
C4—C3 1.507 (3) C2—H2B 0.9600
C4—H4A 0.9700 C2—H2C 0.9600
C4—H4B 0.9700 C1—H1A 0.9600
C3—N1 1.318 (3) C1—H1B 0.9600
N1—C2 1.453 (3) C1—H1C 0.9600
N1—C1 1.472 (3)
C5—C4—C3 112.6 (2) N1—C2—H2A 109.5
C5—C4—H4A 109.1 N1—C2—H2B 109.5
C3—C4—H4A 109.1 H2A—C2—H2B 109.5
C5—C4—H4B 109.1 N1—C2—H2C 109.5
C3—C4—H4B 109.1 H2A—C2—H2C 109.5
H4A—C4—H4B 107.8 H2B—C2—H2C 109.5
O—C3—N1 122.6 (2) N1—C1—H1A 109.5
O—C3—C4 119.5 (2) N1—C1—H1B 109.5
N1—C3—C4 117.94 (19) H1A—C1—H1B 109.5
C3—N1—C2 119.2 (2) N1—C1—H1C 109.5
C3—N1—C1 124.6 (2) H1A—C1—H1C 109.5
C2—N1—C1 116.1 (2) H1B—C1—H1C 109.5
N2—C5—C4 178.7 (3)
C5—C4—C3—O −3.2 (3) O—C3—N1—C1 177.2 (3)
C5—C4—C3—N1 177.1 (2) C4—C3—N1—C1 −3.1 (4)
O—C3—N1—C2 0.8 (4) C3—C4—C5—N2 167 (15)
C4—C3—N1—C2 −179.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4A···Oi 0.97 2.38 3.300 (3) 159.
C4—H4B···Oii 0.97 2.41 3.141 (3) 132.

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2222).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Liu, S., Yu, G. Q., Du, G., Lv, L. Z., Yang, X. Y., Wang, S. J., Xu, N., Wang, J. R. & Zhou, X. J. (2011). China Patent CN2011104108331.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global, n1. DOI: 10.1107/S1600536812000748/lx2222sup1.cif

e-68-0o457-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000748/lx2222Isup2.hkl

e-68-0o457-Isup2.hkl (55.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000748/lx2222Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES