Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 21;68(Pt 2):o481. doi: 10.1107/S1600536812001973

3-(4-Bromo­phenyl­sulfin­yl)-2,4,6,7-tetra­methyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3275229  PMID: 22347085

Abstract

In the title compound, C18H17BrO2S, the 4-bromo­phenyl ring makes a dihedral angle of 89.03 (6)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2010a,b ).graphic file with name e-68-0o481-scheme1.jpg

Experimental

Crystal data

  • C18H17BrO2S

  • M r = 377.29

  • Orthorhombic, Inline graphic

  • a = 12.0900 (4) Å

  • b = 20.8119 (10) Å

  • c = 6.4865 (2) Å

  • V = 1632.11 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.65 mm−1

  • T = 173 K

  • 0.28 × 0.27 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.524, T max = 0.857

  • 8826 measured reflections

  • 3658 independent reflections

  • 2943 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.076

  • S = 0.99

  • 3658 reflections

  • 203 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983), 1607 Friedel pairs

  • Flack parameter: 0.005 (8)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001973/xu5447sup1.cif

e-68-0o481-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001973/xu5447Isup2.hkl

e-68-0o481-Isup2.hkl (179.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812001973/xu5447Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are centroids of the C2–C7 benzene ring and the C13–C18 bromo­phenyl ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.95 2.58 3.397 (3) 144
C10—H10BCg1ii 0.98 2.87 3.604 (3) 132
C12—H12BCg2iii 0.98 2.84 3.671 (3) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

supplementary crystallographic information

Comment

Benzofuran analogues have drawn much attention owing to their valuable biological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing study of 2,4,6,7-tetramethyl-1-benzofuran derivatives containing either 3-(4-fluorophenylsulfinyl) (Choi et al., 2010a) or 3-(4-chlorophenylsulfinyl) (Choi et al., 2010b) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.014 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-bromophenyl ring and the mean plane of the benzofuran fragment is 89.03 (6) °. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1, first entry). The crystal packing (Fig. 3) is further stabilized by intermolecular C—H···π interactions (Table 1, second & third entry, Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C13–C18 4-bromophenyl ring, respectively).

Experimental

77% 3-chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 3-(4-bromophenylsulfanyl)-2,4,6,7-tetramethyl-1-benzofuran (325 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colorless solid [yield 71%, m.p. 452–453 K; Rf = 0.46 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x + 1/2, - y + 1/2, z; (iv) x - 1/2, - y + 1/2, z.]

Fig. 3.

Fig. 3.

A view of C—H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (ii) - x + 1, - y, z - 1/2; (iii) x, y, z + 1; (v) - x + 1, - y, z + 1/2; (vi)x, y, z - 1.]

Crystal data

C18H17BrO2S F(000) = 768
Mr = 377.29 Dx = 1.535 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 3034 reflections
a = 12.0900 (4) Å θ = 2.6–26.5°
b = 20.8119 (10) Å µ = 2.65 mm1
c = 6.4865 (2) Å T = 173 K
V = 1632.11 (11) Å3 Block, colourless
Z = 4 0.28 × 0.27 × 0.06 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3658 independent reflections
Radiation source: rotating anode 2943 reflections with I > 2σ(I)
graphite multilayer Rint = 0.037
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 2.0°
φ and ω scans h = −15→15
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −14→27
Tmin = 0.524, Tmax = 0.857 l = −8→8
8826 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0182P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
3658 reflections Δρmax = 0.29 e Å3
203 parameters Δρmin = −0.29 e Å3
1 restraint Absolute structure: Flack (1983), 1607 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.005 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.48579 (2) 0.445878 (18) −0.20739 (7) 0.05430 (12)
S1 0.36475 (5) 0.25057 (4) 0.52550 (12) 0.03236 (16)
O1 0.62687 (13) 0.14452 (9) 0.6057 (3) 0.0293 (4)
O2 0.25673 (14) 0.22004 (11) 0.4737 (3) 0.0426 (5)
C1 0.47176 (18) 0.19373 (14) 0.5032 (4) 0.0265 (6)
C2 0.49653 (18) 0.14497 (14) 0.3496 (4) 0.0271 (6)
C3 0.4518 (2) 0.12236 (13) 0.1632 (4) 0.0296 (6)
C4 0.5086 (2) 0.07291 (16) 0.0671 (5) 0.0341 (7)
H4 0.4800 0.0571 −0.0597 0.041*
C5 0.6055 (2) 0.04454 (13) 0.1445 (4) 0.0321 (6)
C6 0.6495 (2) 0.06553 (13) 0.3332 (4) 0.0302 (6)
C7 0.5935 (2) 0.11587 (13) 0.4230 (4) 0.0263 (6)
C8 0.5520 (2) 0.19176 (13) 0.6489 (4) 0.0275 (6)
C9 0.3473 (2) 0.14958 (16) 0.0704 (4) 0.0373 (7)
H9A 0.3632 0.1916 0.0091 0.056*
H9B 0.2912 0.1544 0.1783 0.056*
H9C 0.3198 0.1204 −0.0364 0.056*
C10 0.6606 (2) −0.00863 (15) 0.0254 (5) 0.0460 (8)
H10A 0.7390 0.0017 0.0058 0.069*
H10B 0.6247 −0.0132 −0.1093 0.069*
H10C 0.6539 −0.0490 0.1021 0.069*
C11 0.7512 (2) 0.03784 (15) 0.4304 (5) 0.0401 (7)
H11A 0.7537 0.0499 0.5763 0.060*
H11B 0.8169 0.0546 0.3601 0.060*
H11C 0.7496 −0.0091 0.4183 0.060*
C12 0.5771 (2) 0.23122 (14) 0.8323 (4) 0.0341 (6)
H12A 0.5872 0.2032 0.9521 0.051*
H12B 0.5157 0.2609 0.8583 0.051*
H12C 0.6450 0.2558 0.8081 0.051*
C13 0.40119 (18) 0.30180 (12) 0.3141 (4) 0.0280 (6)
C14 0.32284 (19) 0.31628 (13) 0.1674 (4) 0.0304 (6)
H14 0.2519 0.2968 0.1740 0.036*
C15 0.3471 (2) 0.35925 (14) 0.0098 (5) 0.0325 (6)
H15 0.2940 0.3689 −0.0936 0.039*
C16 0.4504 (2) 0.38754 (13) 0.0075 (4) 0.0336 (6)
C17 0.5294 (2) 0.37388 (14) 0.1551 (5) 0.0351 (7)
H17 0.5999 0.3939 0.1497 0.042*
C18 0.50500 (18) 0.33121 (14) 0.3091 (6) 0.0328 (6)
H18 0.5584 0.3217 0.4121 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.04980 (18) 0.0588 (2) 0.0543 (2) −0.01458 (15) −0.0108 (2) 0.0187 (2)
S1 0.0254 (3) 0.0424 (4) 0.0292 (3) 0.0041 (3) 0.0027 (3) −0.0035 (3)
O1 0.0267 (8) 0.0342 (11) 0.0269 (9) 0.0003 (8) −0.0012 (8) −0.0024 (8)
O2 0.0204 (8) 0.0585 (15) 0.0490 (13) −0.0016 (8) 0.0056 (8) 0.0010 (11)
C1 0.0225 (11) 0.0324 (16) 0.0246 (13) −0.0003 (10) 0.0043 (11) −0.0007 (11)
C2 0.0235 (12) 0.0294 (17) 0.0283 (15) −0.0036 (10) 0.0051 (10) 0.0010 (11)
C3 0.0284 (12) 0.0340 (17) 0.0264 (13) −0.0081 (11) −0.0011 (11) 0.0028 (13)
C4 0.0385 (15) 0.0387 (18) 0.0251 (14) −0.0125 (13) 0.0008 (11) −0.0040 (13)
C5 0.0363 (14) 0.0261 (16) 0.0339 (15) −0.0072 (11) 0.0089 (13) −0.0038 (12)
C6 0.0291 (12) 0.0292 (17) 0.0323 (16) −0.0045 (10) 0.0028 (11) 0.0014 (13)
C7 0.0265 (12) 0.0309 (16) 0.0214 (12) −0.0037 (11) 0.0010 (11) −0.0007 (11)
C8 0.0267 (12) 0.0309 (16) 0.0249 (14) 0.0002 (11) 0.0017 (11) 0.0017 (12)
C9 0.0327 (13) 0.049 (2) 0.0299 (15) −0.0067 (13) −0.0065 (12) −0.0059 (13)
C10 0.0533 (18) 0.040 (2) 0.0448 (16) −0.0017 (14) 0.0079 (18) −0.0112 (16)
C11 0.0357 (14) 0.0355 (19) 0.0490 (18) 0.0064 (13) −0.0006 (14) −0.0014 (15)
C12 0.0318 (14) 0.0416 (18) 0.0288 (15) 0.0003 (12) −0.0011 (12) −0.0052 (13)
C13 0.0234 (10) 0.0303 (15) 0.0304 (14) 0.0065 (10) −0.0005 (12) −0.0068 (13)
C14 0.0219 (11) 0.0340 (17) 0.0351 (15) 0.0023 (11) −0.0029 (12) −0.0059 (13)
C15 0.0238 (12) 0.0369 (18) 0.0369 (15) 0.0039 (11) −0.0055 (12) −0.0041 (14)
C16 0.0370 (13) 0.0303 (17) 0.0335 (15) −0.0001 (12) −0.0020 (13) −0.0030 (14)
C17 0.0247 (12) 0.0347 (18) 0.0459 (18) −0.0028 (12) −0.0009 (13) −0.0036 (14)
C18 0.0262 (12) 0.0350 (17) 0.0371 (16) 0.0046 (10) −0.0061 (14) −0.0006 (16)

Geometric parameters (Å, °)

Br1—C16 1.897 (3) C9—H9C 0.9800
S1—O2 1.491 (2) C10—H10A 0.9800
S1—C1 1.759 (3) C10—H10B 0.9800
S1—C13 1.792 (3) C10—H10C 0.9800
O1—C8 1.365 (3) C11—H11A 0.9800
O1—C7 1.387 (3) C11—H11B 0.9800
C1—C8 1.355 (4) C11—H11C 0.9800
C1—C2 1.453 (4) C12—H12A 0.9800
C2—C7 1.403 (4) C12—H12B 0.9800
C2—C3 1.405 (4) C12—H12C 0.9800
C3—C4 1.385 (4) C13—C14 1.376 (4)
C3—C9 1.510 (4) C13—C18 1.397 (3)
C4—C5 1.406 (4) C14—C15 1.390 (4)
C4—H4 0.9500 C14—H14 0.9500
C5—C6 1.404 (4) C15—C16 1.381 (4)
C5—C10 1.505 (4) C15—H15 0.9500
C6—C7 1.377 (4) C16—C17 1.381 (4)
C6—C11 1.497 (4) C17—C18 1.369 (5)
C8—C12 1.477 (4) C17—H17 0.9500
C9—H9A 0.9800 C18—H18 0.9500
C9—H9B 0.9800
O2—S1—C1 109.82 (13) C5—C10—H10B 109.5
O2—S1—C13 107.25 (12) H10A—C10—H10B 109.5
C1—S1—C13 99.00 (12) C5—C10—H10C 109.5
C8—O1—C7 107.00 (19) H10A—C10—H10C 109.5
C8—C1—C2 108.0 (2) H10B—C10—H10C 109.5
C8—C1—S1 119.3 (2) C6—C11—H11A 109.5
C2—C1—S1 132.64 (19) C6—C11—H11B 109.5
C7—C2—C3 118.0 (3) H11A—C11—H11B 109.5
C7—C2—C1 103.9 (2) C6—C11—H11C 109.5
C3—C2—C1 138.1 (2) H11A—C11—H11C 109.5
C4—C3—C2 116.5 (2) H11B—C11—H11C 109.5
C4—C3—C9 120.9 (3) C8—C12—H12A 109.5
C2—C3—C9 122.6 (3) C8—C12—H12B 109.5
C3—C4—C5 124.3 (3) H12A—C12—H12B 109.5
C3—C4—H4 117.8 C8—C12—H12C 109.5
C5—C4—H4 117.8 H12A—C12—H12C 109.5
C6—C5—C4 119.8 (3) H12B—C12—H12C 109.5
C6—C5—C10 120.6 (3) C14—C13—C18 120.4 (3)
C4—C5—C10 119.6 (3) C14—C13—S1 119.35 (18)
C7—C6—C5 114.8 (2) C18—C13—S1 120.0 (2)
C7—C6—C11 121.3 (2) C13—C14—C15 120.3 (2)
C5—C6—C11 123.9 (2) C13—C14—H14 119.8
C6—C7—O1 123.1 (2) C15—C14—H14 119.8
C6—C7—C2 126.6 (2) C16—C15—C14 118.2 (2)
O1—C7—C2 110.3 (2) C16—C15—H15 120.9
C1—C8—O1 110.7 (2) C14—C15—H15 120.9
C1—C8—C12 133.8 (2) C17—C16—C15 122.0 (3)
O1—C8—C12 115.5 (2) C17—C16—Br1 119.0 (2)
C3—C9—H9A 109.5 C15—C16—Br1 119.0 (2)
C3—C9—H9B 109.5 C18—C17—C16 119.4 (2)
H9A—C9—H9B 109.5 C18—C17—H17 120.3
C3—C9—H9C 109.5 C16—C17—H17 120.3
H9A—C9—H9C 109.5 C17—C18—C13 119.6 (3)
H9B—C9—H9C 109.5 C17—C18—H18 120.2
C5—C10—H10A 109.5 C13—C18—H18 120.2
O2—S1—C1—C8 −137.6 (2) C8—O1—C7—C2 −0.2 (3)
C13—S1—C1—C8 110.3 (2) C3—C2—C7—C6 −1.6 (4)
O2—S1—C1—C2 43.6 (3) C1—C2—C7—C6 178.7 (3)
C13—S1—C1—C2 −68.5 (3) C3—C2—C7—O1 179.1 (2)
C8—C1—C2—C7 1.1 (3) C1—C2—C7—O1 −0.5 (3)
S1—C1—C2—C7 −180.0 (2) C2—C1—C8—O1 −1.3 (3)
C8—C1—C2—C3 −178.5 (3) S1—C1—C8—O1 179.65 (18)
S1—C1—C2—C3 0.4 (5) C2—C1—C8—C12 175.0 (3)
C7—C2—C3—C4 −0.3 (4) S1—C1—C8—C12 −4.1 (4)
C1—C2—C3—C4 179.2 (3) C7—O1—C8—C1 0.9 (3)
C7—C2—C3—C9 179.5 (2) C7—O1—C8—C12 −176.1 (2)
C1—C2—C3—C9 −1.0 (5) O2—S1—C13—C14 13.0 (2)
C2—C3—C4—C5 0.5 (4) C1—S1—C13—C14 127.2 (2)
C9—C3—C4—C5 −179.3 (3) O2—S1—C13—C18 −172.7 (2)
C3—C4—C5—C6 1.2 (4) C1—S1—C13—C18 −58.6 (2)
C3—C4—C5—C10 −179.5 (3) C18—C13—C14—C15 1.5 (4)
C4—C5—C6—C7 −2.8 (4) S1—C13—C14—C15 175.7 (2)
C10—C5—C6—C7 177.9 (2) C13—C14—C15—C16 −1.2 (4)
C4—C5—C6—C11 179.0 (3) C14—C15—C16—C17 0.6 (4)
C10—C5—C6—C11 −0.3 (4) C14—C15—C16—Br1 179.5 (2)
C5—C6—C7—O1 −177.7 (2) C15—C16—C17—C18 −0.2 (4)
C11—C6—C7—O1 0.5 (4) Br1—C16—C17—C18 −179.2 (2)
C5—C6—C7—C2 3.2 (4) C16—C17—C18—C13 0.5 (5)
C11—C6—C7—C2 −178.6 (3) C14—C13—C18—C17 −1.1 (4)
C8—O1—C7—C6 −179.4 (2) S1—C13—C18—C17 −175.3 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are centroids of the C2–C7 benzene ring and the C13–C18 bromophenyl ring, respectively.
D—H···A D—H H···A D···A D—H···A
C18—H18···O2i 0.95 2.58 3.397 (3) 144
C10—H10B···Cg1ii 0.98 2.87 3.604 (3) 132
C12—H12B···Cg2iii 0.98 2.84 3.671 (3) 143

Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) −x+1, −y, z−1/2; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5447).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o643. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o3087. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  10. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001973/xu5447sup1.cif

e-68-0o481-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001973/xu5447Isup2.hkl

e-68-0o481-Isup2.hkl (179.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812001973/xu5447Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES