Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 21;68(Pt 2):o484. doi: 10.1107/S1600536812001481

(E)-2-({2-[(E)-(Hy­droxy­imino)­meth­yl]phen­oxy}meth­yl)-3-o-tolyl­acrylonitrile

E Govindan a, J Srinivasan b, M Bakthadoss b, A SubbiahPandi a,*
PMCID: PMC3275232  PMID: 22347088

Abstract

In the title compound, C18H16N2O2, the dihedral angle between the mean planes through the two benzene rings is 56.8 (6)°. The enoate group assumes an extended conformation. The hy­droxy­ethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane being 0.047 (1) Å for the hy­droxy­imino O atom. In the crystal, the mol­ecules are linked into cyclic centrosymmetric dimers with R 2 2(6) motifs via O—H⋯N hydrogen bonds.

Related literature

For the use of 2-cyano­acrylates and oximes as agrochemicals, see: Zhang et al. (2009). For the use of oximes as chelating ligands in coordination and analytical chemistry, see: Chaudhuri et al. (2003). For a related structure, see: Govindan et al. (2011).graphic file with name e-68-0o484-scheme1.jpg

Experimental

Crystal data

  • C18H16N2O2

  • M r = 292.33

  • Triclinic, Inline graphic

  • a = 7.0214 (2) Å

  • b = 10.5094 (3) Å

  • c = 10.8854 (3) Å

  • α = 97.636 (1)°

  • β = 95.953 (1)°

  • γ = 99.642 (1)°

  • V = 778.32 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.978, T max = 0.983

  • 21189 measured reflections

  • 5557 independent reflections

  • 3825 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.163

  • S = 1.06

  • 5557 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001481/qm2049sup1.cif

e-68-0o484-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001481/qm2049Isup2.hkl

e-68-0o484-Isup2.hkl (266.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812001481/qm2049Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 2.07 2.7962 (13) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other tolylacrylonitile derivatives (Govindan et al., 2011). The whole molecule is not planar as the dihedral angle between the two phenyl rings is 56.8 (6)°, The oxime group having the C=N forming an E configuration. The hydroxyethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane of the hydroxyethanimine [C=N—OH] group is 0.047 (1) Å. for the O1 atom.

The enoate group assumes an extended conformation as can be seen from torsion angles C2—C1—N1—O1 [177.9 (2)°] and C1—C2—C3—C4 [-177.1 (2) °]. The atom C15 in the molecule (x,y,z) donate one proton to atom O1 of the molecule at (-1 - x,-y,1 - z) forming a C(6) chain along b axis. The hydroxyethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R22(6) (Fig. 2). In addition to van der Waals interaction, the crystal packing is stabilized by C—H···O interactions.

Experimental

To a stirred solution of (E)-2-((2-formylphenoxy)methyl)-3-o- tolylacrylonitrile (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 x 15 ml). The combined organic layer was washed with brine (2 x 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (2E)-2-((2-((Hydroxyimino)methyl) phenoxy)methyl)-3-o-tolylacrylonitrile as a colourless solid.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title molecule with the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The crystal structure showing the centrosymmetric hydrogen bond motif R22(6). For the sake of clarity, the H atoms not involved in the motif have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (-1 - x, -y, 1 - z). The dashed lines indicate the hydrogen bonds.

Crystal data

C18H16N2O2 Z = 2
Mr = 292.33 F(000) = 308
Triclinic, P1 Dx = 1.247 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0214 (2) Å Cell parameters from 5557 reflections
b = 10.5094 (3) Å θ = 1.9°
c = 10.8854 (3) Å µ = 0.08 mm1
α = 97.636 (1)° T = 293 K
β = 95.953 (1)° Block, white crystalline
γ = 99.642 (1)° 0.25 × 0.22 × 0.19 mm
V = 778.32 (4) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 5557 independent reflections
Radiation source: fine-focus sealed tube 3825 reflections with I > 2σ(I)
graphite Rint = 0.029
ω and φ scans θmax = 34.6°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→11
Tmin = 0.978, Tmax = 0.983 k = −16→15
21189 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.0621P] where P = (Fo2 + 2Fc2)/3
5557 reflections (Δ/σ)max < 0.001
201 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.15593 (16) 0.00826 (11) 0.65422 (11) 0.0458 (3)
H1 −0.1182 0.0760 0.7210 0.055*
C2 −0.02936 (15) −0.08709 (10) 0.63051 (10) 0.0403 (2)
C3 −0.08597 (19) −0.20010 (12) 0.54286 (12) 0.0537 (3)
H3 −0.2068 −0.2148 0.4943 0.064*
C4 0.0343 (2) −0.29046 (12) 0.52696 (13) 0.0590 (3)
H4 −0.0051 −0.3649 0.4674 0.071*
C5 0.21237 (19) −0.27051 (12) 0.59921 (12) 0.0536 (3)
H5 0.2919 −0.3327 0.5897 0.064*
C6 0.27362 (17) −0.15902 (11) 0.68554 (11) 0.0465 (3)
H6 0.3947 −0.1455 0.7337 0.056*
C7 0.15422 (14) −0.06683 (10) 0.70047 (9) 0.0381 (2)
C8 0.34958 (15) 0.05707 (11) 0.88418 (10) 0.0430 (2)
H8A 0.4795 0.0729 0.8598 0.052*
H8B 0.3317 −0.0240 0.9187 0.052*
C9 0.32336 (14) 0.16826 (10) 0.97920 (10) 0.0387 (2)
C10 0.12321 (15) 0.17173 (11) 0.99392 (11) 0.0467 (3)
C11 0.47398 (14) 0.25582 (10) 1.04165 (10) 0.0395 (2)
H11 0.5958 0.2450 1.0203 0.047*
C12 0.47398 (15) 0.36647 (10) 1.13905 (10) 0.0399 (2)
C13 0.3269 (2) 0.36659 (13) 1.21596 (12) 0.0552 (3)
H13 0.2299 0.2930 1.2087 0.066*
C14 0.3234 (2) 0.47427 (15) 1.30267 (15) 0.0735 (4)
H14 0.2238 0.4735 1.3527 0.088*
C15 0.4678 (3) 0.58260 (15) 1.31470 (16) 0.0760 (5)
H15 0.4642 0.6563 1.3714 0.091*
C16 0.6170 (2) 0.58189 (12) 1.24310 (14) 0.0609 (3)
H16 0.7149 0.6554 1.2533 0.073*
C17 0.62672 (16) 0.47510 (11) 1.15593 (11) 0.0441 (2)
C18 0.79547 (18) 0.47851 (14) 1.08190 (15) 0.0597 (3)
H18A 0.8811 0.5616 1.1046 0.090*
H18B 0.7484 0.4657 0.9943 0.090*
H18C 0.8651 0.4104 1.0993 0.090*
N1 −0.31578 (13) 0.00044 (10) 0.58572 (9) 0.0461 (2)
N2 −0.03874 (16) 0.17076 (12) 0.99832 (14) 0.0698 (4)
O1 −0.41663 (12) 0.09866 (9) 0.62794 (9) 0.0605 (3)
H1A −0.5163 0.0935 0.5797 0.091*
O2 0.20712 (11) 0.04926 (7) 0.77921 (7) 0.0467 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0381 (5) 0.0484 (6) 0.0469 (6) 0.0088 (4) −0.0016 (4) −0.0025 (5)
C2 0.0366 (5) 0.0415 (5) 0.0403 (5) 0.0061 (4) 0.0010 (4) 0.0014 (4)
C3 0.0508 (6) 0.0495 (6) 0.0520 (7) 0.0048 (5) −0.0073 (5) −0.0076 (5)
C4 0.0703 (8) 0.0439 (6) 0.0553 (7) 0.0082 (6) 0.0010 (6) −0.0108 (5)
C5 0.0648 (7) 0.0449 (6) 0.0527 (7) 0.0205 (5) 0.0097 (6) −0.0010 (5)
C6 0.0455 (6) 0.0466 (6) 0.0471 (6) 0.0159 (5) 0.0017 (4) 0.0005 (5)
C7 0.0387 (5) 0.0371 (5) 0.0368 (5) 0.0077 (4) 0.0022 (4) 0.0004 (4)
C8 0.0359 (5) 0.0443 (5) 0.0456 (6) 0.0138 (4) −0.0041 (4) −0.0056 (4)
C9 0.0350 (4) 0.0378 (5) 0.0422 (5) 0.0098 (4) 0.0021 (4) −0.0002 (4)
C10 0.0386 (5) 0.0400 (5) 0.0571 (7) 0.0063 (4) 0.0048 (5) −0.0061 (5)
C11 0.0360 (5) 0.0395 (5) 0.0415 (5) 0.0082 (4) 0.0023 (4) 0.0015 (4)
C12 0.0402 (5) 0.0369 (5) 0.0403 (5) 0.0070 (4) 0.0004 (4) 0.0008 (4)
C13 0.0579 (7) 0.0501 (6) 0.0516 (7) −0.0010 (5) 0.0152 (5) −0.0060 (5)
C14 0.0811 (10) 0.0672 (9) 0.0675 (9) 0.0059 (7) 0.0313 (8) −0.0141 (7)
C15 0.0977 (12) 0.0526 (8) 0.0692 (9) 0.0061 (7) 0.0200 (8) −0.0191 (7)
C16 0.0689 (8) 0.0408 (6) 0.0638 (8) −0.0020 (6) 0.0026 (6) −0.0049 (5)
C17 0.0426 (5) 0.0390 (5) 0.0477 (6) 0.0057 (4) −0.0020 (4) 0.0043 (4)
C18 0.0435 (6) 0.0541 (7) 0.0775 (9) −0.0001 (5) 0.0086 (6) 0.0063 (6)
N1 0.0370 (4) 0.0491 (5) 0.0508 (5) 0.0111 (4) 0.0010 (4) 0.0023 (4)
N2 0.0416 (5) 0.0669 (7) 0.0954 (9) 0.0107 (5) 0.0122 (5) −0.0110 (6)
O1 0.0460 (5) 0.0644 (6) 0.0689 (6) 0.0224 (4) −0.0026 (4) −0.0054 (4)
O2 0.0442 (4) 0.0416 (4) 0.0490 (4) 0.0146 (3) −0.0114 (3) −0.0076 (3)

Geometric parameters (Å, °)

C1—N1 1.2655 (14) C10—N2 1.1415 (15)
C1—C2 1.4621 (14) C11—C12 1.4658 (13)
C1—H1 0.9300 C11—H11 0.9300
C2—C3 1.3932 (15) C12—C13 1.3950 (16)
C2—C7 1.3958 (14) C12—C17 1.4074 (16)
C3—C4 1.3783 (18) C13—C14 1.3793 (17)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.3751 (19) C14—C15 1.374 (2)
C4—H4 0.9300 C14—H14 0.9300
C5—C6 1.3768 (16) C15—C16 1.369 (2)
C5—H5 0.9300 C15—H15 0.9300
C6—C7 1.3880 (14) C16—C17 1.3859 (16)
C6—H6 0.9300 C16—H16 0.9300
C7—O2 1.3658 (12) C17—C18 1.4987 (17)
C8—O2 1.4225 (12) C18—H18A 0.9600
C8—C9 1.5032 (13) C18—H18B 0.9600
C8—H8A 0.9700 C18—H18C 0.9600
C8—H8B 0.9700 N1—O1 1.4016 (12)
C9—C11 1.3364 (14) O1—H1A 0.8200
C9—C10 1.4367 (14)
N1—C1—C2 121.33 (10) C9—C11—C12 129.04 (9)
N1—C1—H1 119.3 C9—C11—H11 115.5
C2—C1—H1 119.3 C12—C11—H11 115.5
C3—C2—C7 118.07 (10) C13—C12—C17 119.11 (10)
C3—C2—C1 122.78 (10) C13—C12—C11 121.69 (10)
C7—C2—C1 119.13 (9) C17—C12—C11 119.20 (10)
C4—C3—C2 121.07 (11) C14—C13—C12 120.96 (12)
C4—C3—H3 119.5 C14—C13—H13 119.5
C2—C3—H3 119.5 C12—C13—H13 119.5
C5—C4—C3 119.99 (11) C15—C14—C13 119.68 (13)
C5—C4—H4 120.0 C15—C14—H14 120.2
C3—C4—H4 120.0 C13—C14—H14 120.2
C4—C5—C6 120.34 (11) C16—C15—C14 119.93 (12)
C4—C5—H5 119.8 C16—C15—H15 120.0
C6—C5—H5 119.8 C14—C15—H15 120.0
C5—C6—C7 119.82 (11) C15—C16—C17 122.09 (12)
C5—C6—H6 120.1 C15—C16—H16 119.0
C7—C6—H6 120.1 C17—C16—H16 119.0
O2—C7—C6 123.73 (9) C16—C17—C12 118.08 (11)
O2—C7—C2 115.58 (8) C16—C17—C18 119.87 (11)
C6—C7—C2 120.66 (10) C12—C17—C18 122.04 (10)
O2—C8—C9 107.03 (8) C17—C18—H18A 109.5
O2—C8—H8A 110.3 C17—C18—H18B 109.5
C9—C8—H8A 110.3 H18A—C18—H18B 109.5
O2—C8—H8B 110.3 C17—C18—H18C 109.5
C9—C8—H8B 110.3 H18A—C18—H18C 109.5
H8A—C8—H8B 108.6 H18B—C18—H18C 109.5
C11—C9—C10 124.04 (9) C1—N1—O1 111.76 (9)
C11—C9—C8 122.27 (9) N1—O1—H1A 109.5
C10—C9—C8 113.68 (9) C7—O2—C8 118.07 (8)
N2—C10—C9 175.85 (13)
N1—C1—C2—C3 −8.33 (19) C8—C9—C11—C12 −177.93 (10)
N1—C1—C2—C7 173.47 (11) C9—C11—C12—C13 26.68 (19)
C7—C2—C3—C4 1.03 (19) C9—C11—C12—C17 −153.67 (12)
C1—C2—C3—C4 −177.18 (13) C17—C12—C13—C14 3.8 (2)
C2—C3—C4—C5 0.8 (2) C11—C12—C13—C14 −176.50 (13)
C3—C4—C5—C6 −1.6 (2) C12—C13—C14—C15 −0.7 (3)
C4—C5—C6—C7 0.57 (19) C13—C14—C15—C16 −1.8 (3)
C5—C6—C7—O2 −176.62 (11) C14—C15—C16—C17 1.1 (3)
C5—C6—C7—C2 1.26 (18) C15—C16—C17—C12 2.0 (2)
C3—C2—C7—O2 176.01 (10) C15—C16—C17—C18 −178.74 (15)
C1—C2—C7—O2 −5.71 (15) C13—C12—C17—C16 −4.40 (18)
C3—C2—C7—C6 −2.03 (17) C11—C12—C17—C16 175.94 (11)
C1—C2—C7—C6 176.25 (10) C13—C12—C17—C18 176.37 (12)
O2—C8—C9—C11 −135.77 (11) C11—C12—C17—C18 −3.29 (17)
O2—C8—C9—C10 43.22 (13) C2—C1—N1—O1 177.80 (10)
C11—C9—C10—N2 151.8 (19) C6—C7—O2—C8 −25.64 (15)
C8—C9—C10—N2 −27 (2) C2—C7—O2—C8 156.39 (10)
C10—C9—C11—C12 3.19 (19) C9—C8—O2—C7 −157.61 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1i 0.82 2.07 2.7962 (13) 147

Symmetry codes: (i) −x−1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2049).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  2. Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Govindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001481/qm2049sup1.cif

e-68-0o484-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001481/qm2049Isup2.hkl

e-68-0o484-Isup2.hkl (266.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812001481/qm2049Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES