Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 21;68(Pt 2):o502. doi: 10.1107/S1600536812002188

3,4-Dimethyl-2-(2-oxo-2-phenyl­eth­yl)-2H,4H-pyrazolo­[4,3-c][1,2]benzothia­zine-5,5-dione

Sana Aslam a, Hamid Latif Siddiqui a,*, Matloob Ahmad b, Iftikhar Hussain Bukhari b, Masood Parvez c
PMCID: PMC3275247  PMID: 22347103

Abstract

In the title mol­ecule, C19H17N3O3S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S and N atoms displaced by 0.530 (5) and 0.229 (6) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The ethanone group lies at an angle of 3.8 (3)° with respect to the benzene ring, which lies almost perendicular to the pyrazole ring, with a dihedral between the two planes of 89.22 (11)°. Weak inter­molecular C—H⋯O hydrogen-bonding inter­actions are present.

Related literature

For the biological activity of pyrazoles, see: Farag et al. (2008); Ciciani et al. (2008); Cunico et al. (2006); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008).graphic file with name e-68-0o502-scheme1.jpg

Experimental

Crystal data

  • C19H17N3O3S

  • M r = 367.42

  • Monoclinic, Inline graphic

  • a = 24.380 (6) Å

  • b = 11.141 (4) Å

  • c = 14.996 (5) Å

  • β = 120.76 (2)°

  • V = 3500.1 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 200 K

  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.975, T max = 0.983

  • 12615 measured reflections

  • 3970 independent reflections

  • 2847 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.146

  • S = 1.15

  • 3970 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002188/pk2383sup1.cif

e-68-0o502-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002188/pk2383Isup2.hkl

e-68-0o502-Isup2.hkl (190.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812002188/pk2383Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.95 2.43 3.246 (5) 144
C9—H9B⋯O1ii 0.98 2.46 3.413 (4) 163
C11—H11C⋯O1iii 0.98 2.44 3.406 (4) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

supplementary crystallographic information

Comment

Both benzothiazines and pyrazoles are known as versatile biologically active heterocyclic nuclei. Pyrazoles are found to be cytotoxic agents (Ciciani et al., 2008), anti-tumor (Farag et al., 2008), anti-malarial (Cunico et al., 2006), etc. In continuation of our research interests in biologically active molecules (Ahmad et al., 2010), we have fused both of these heterocycles and herein report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title molecule (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half chair conformation with atoms S1 and N1 displaced by 0.530 (5) and 0.229 (6) Å, respectively, on opposite sides from the mean plane formed by the remaining ring atoms. The ethanone group O3/C12/C13/C14 is oriented at 3.8 (3) °, with the benzene ring (C14–C19) which lies almost perpendicular to the pyrazolyl ring (N2/N3/C7/C8/C10) with a dihedral between the two planes of 89.22 (11)°. The structure is devoid of classical hydrogen bonds. However, intermolecular hydrogen bonding interactions of C—H···O type are present (Table 1).

Experimental

Equimolar quantities of 3,4-dimethyl-2,4-dihydropyrazolo[4,3-c][1,2] benzothiazine 5,5-dioxide (1.0 g, 4.01 mmol) and corresponding phenacyl bromide (0.80 g, 4.01 mmol) were dissolved in acetonitrile (20 ml) followed by the addition of equimolar K2CO3 (0.55 g, 4.01 mmol). The mixture was subjected to reflux for 7 h. The completion of reaction was monitored with the help of TLC. The precipitates of the title compound were collected and washed with methanol. The crystals suitable for X-ray crystallographic analysis were grown from a solution of CHCl3:MeOH in 1:1 ratio.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map, the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively. The Uiso(H) were included at 1.5Ueq(C methyl) or 1.2Ueq(C non-methyl). The final difference map was essentially featureless.

Figures

Fig. 1.

Fig. 1.

The title molecule with displacement ellipsoids plotted at the 30% probability level.

Fig. 2.

Fig. 2.

A part of the unit cell showing intermolecular hydrogen bonding interactions as dashed lines. H-atoms not involved in hydrogen bonding have been excluded for clarity.

Crystal data

C19H17N3O3S F(000) = 1536
Mr = 367.42 Dx = 1.394 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6235 reflections
a = 24.380 (6) Å θ = 1.0–27.5°
b = 11.141 (4) Å µ = 0.21 mm1
c = 14.996 (5) Å T = 200 K
β = 120.76 (2)° Block, colorless
V = 3500.1 (19) Å3 0.12 × 0.10 × 0.08 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer 3970 independent reflections
Radiation source: fine-focus sealed tube 2847 reflections with I > 2σ(I)
graphite Rint = 0.073
ω and φ scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SORTAV; Blessing, 1997) h = −31→30
Tmin = 0.975, Tmax = 0.983 k = −14→14
12615 measured reflections l = −18→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.025P)2 + 10.0879P] where P = (Fo2 + 2Fc2)/3
3970 reflections (Δ/σ)max < 0.001
237 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.37478 (4) 0.35736 (7) 0.23368 (6) 0.0377 (2)
O1 0.41198 (11) 0.3575 (2) 0.18465 (19) 0.0511 (6)
O2 0.33464 (11) 0.4586 (2) 0.21844 (19) 0.0470 (6)
O3 0.42366 (12) 0.1146 (2) 0.65556 (19) 0.0555 (7)
N1 0.42423 (11) 0.3433 (2) 0.3603 (2) 0.0348 (6)
N2 0.31406 (11) 0.2240 (2) 0.43305 (19) 0.0333 (6)
N3 0.35687 (12) 0.2864 (2) 0.51876 (19) 0.0337 (6)
C1 0.26868 (14) 0.0818 (3) 0.2346 (2) 0.0356 (7)
H1 0.2551 0.0498 0.2788 0.043*
C2 0.24943 (16) 0.0283 (3) 0.1398 (3) 0.0445 (8)
H2 0.2219 −0.0394 0.1190 0.053*
C3 0.26953 (17) 0.0715 (3) 0.0750 (3) 0.0496 (9)
H3 0.2563 0.0329 0.0106 0.059*
C4 0.30886 (17) 0.1711 (3) 0.1036 (3) 0.0447 (8)
H4 0.3230 0.2010 0.0595 0.054*
C5 0.32727 (14) 0.2264 (3) 0.1974 (2) 0.0347 (7)
C6 0.30809 (13) 0.1828 (3) 0.2652 (2) 0.0311 (6)
C7 0.33508 (13) 0.2388 (3) 0.3667 (2) 0.0304 (6)
C8 0.39001 (14) 0.3110 (3) 0.4110 (2) 0.0320 (6)
C9 0.48457 (15) 0.2765 (3) 0.3945 (3) 0.0445 (8)
H9A 0.5120 0.2825 0.4701 0.067*
H9B 0.5067 0.3109 0.3614 0.067*
H9C 0.4748 0.1919 0.3747 0.067*
C10 0.40399 (14) 0.3389 (3) 0.5091 (2) 0.0354 (7)
C11 0.45835 (17) 0.4063 (3) 0.5944 (3) 0.0501 (9)
H11A 0.4820 0.4479 0.5668 0.075*
H11B 0.4869 0.3501 0.6487 0.075*
H11C 0.4420 0.4651 0.6236 0.075*
C12 0.35231 (15) 0.2791 (3) 0.6109 (2) 0.0365 (7)
H12A 0.3071 0.2675 0.5907 0.044*
H12B 0.3673 0.3555 0.6499 0.044*
C13 0.39244 (14) 0.1753 (3) 0.6804 (2) 0.0351 (7)
C14 0.39025 (14) 0.1515 (3) 0.7764 (2) 0.0345 (7)
C15 0.35436 (16) 0.2220 (3) 0.8039 (2) 0.0432 (8)
H15 0.3320 0.2899 0.7632 0.052*
C16 0.35119 (18) 0.1929 (4) 0.8912 (3) 0.0551 (10)
H16 0.3268 0.2414 0.9102 0.066*
C17 0.38329 (16) 0.0941 (3) 0.9503 (3) 0.0442 (8)
H17 0.3802 0.0735 1.0091 0.053*
C18 0.41977 (15) 0.0256 (3) 0.9241 (2) 0.0389 (7)
H18 0.4425 −0.0417 0.9656 0.047*
C19 0.42368 (15) 0.0537 (3) 0.8375 (2) 0.0378 (7)
H19 0.4492 0.0063 0.8200 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0417 (4) 0.0377 (4) 0.0452 (5) 0.0021 (4) 0.0305 (4) 0.0067 (4)
O1 0.0548 (15) 0.0607 (16) 0.0576 (15) 0.0012 (13) 0.0430 (13) 0.0104 (13)
O2 0.0550 (15) 0.0386 (13) 0.0570 (15) 0.0097 (11) 0.0356 (13) 0.0128 (12)
O3 0.0629 (16) 0.0654 (18) 0.0503 (15) 0.0271 (14) 0.0377 (13) 0.0125 (13)
N1 0.0318 (13) 0.0371 (15) 0.0427 (15) −0.0028 (11) 0.0243 (12) 0.0012 (12)
N2 0.0305 (13) 0.0380 (14) 0.0324 (13) 0.0011 (11) 0.0169 (11) 0.0020 (11)
N3 0.0353 (13) 0.0373 (14) 0.0313 (13) 0.0017 (12) 0.0190 (11) 0.0019 (11)
C1 0.0288 (15) 0.0397 (18) 0.0354 (17) 0.0004 (14) 0.0144 (14) 0.0027 (14)
C2 0.0388 (18) 0.0427 (19) 0.0447 (19) −0.0034 (15) 0.0160 (16) −0.0040 (16)
C3 0.054 (2) 0.053 (2) 0.0355 (18) 0.0026 (18) 0.0183 (17) −0.0076 (17)
C4 0.053 (2) 0.050 (2) 0.0370 (18) 0.0111 (17) 0.0275 (17) 0.0050 (16)
C5 0.0332 (16) 0.0378 (17) 0.0358 (16) 0.0070 (14) 0.0196 (14) 0.0080 (14)
C6 0.0265 (14) 0.0351 (16) 0.0311 (16) 0.0044 (12) 0.0143 (12) 0.0051 (13)
C7 0.0276 (14) 0.0348 (16) 0.0315 (15) 0.0022 (13) 0.0171 (13) 0.0034 (13)
C8 0.0322 (15) 0.0333 (16) 0.0350 (16) −0.0010 (13) 0.0204 (13) 0.0001 (13)
C9 0.0341 (17) 0.047 (2) 0.059 (2) 0.0022 (16) 0.0292 (17) 0.0043 (18)
C10 0.0341 (16) 0.0352 (17) 0.0391 (17) 0.0011 (14) 0.0203 (14) 0.0011 (14)
C11 0.046 (2) 0.054 (2) 0.050 (2) −0.0121 (18) 0.0240 (18) −0.0155 (18)
C12 0.0428 (17) 0.0383 (17) 0.0343 (16) 0.0014 (15) 0.0241 (15) −0.0009 (14)
C13 0.0324 (15) 0.0393 (17) 0.0348 (16) 0.0031 (14) 0.0179 (14) −0.0005 (14)
C14 0.0312 (15) 0.0403 (17) 0.0320 (16) −0.0004 (14) 0.0162 (13) 0.0009 (14)
C15 0.0458 (19) 0.050 (2) 0.0403 (18) 0.0174 (17) 0.0265 (16) 0.0124 (16)
C16 0.058 (2) 0.070 (3) 0.049 (2) 0.025 (2) 0.036 (2) 0.015 (2)
C17 0.0404 (18) 0.057 (2) 0.0380 (18) 0.0040 (17) 0.0223 (16) 0.0093 (17)
C18 0.0358 (16) 0.0367 (17) 0.0371 (17) 0.0002 (14) 0.0136 (14) 0.0045 (14)
C19 0.0362 (17) 0.0367 (18) 0.0411 (18) 0.0059 (14) 0.0202 (15) 0.0002 (14)

Geometric parameters (Å, °)

S1—O1 1.430 (2) C8—C10 1.365 (4)
S1—O2 1.433 (2) C9—H9A 0.9800
S1—N1 1.656 (3) C9—H9B 0.9800
S1—C5 1.766 (3) C9—H9C 0.9800
O3—C13 1.211 (4) C10—C11 1.490 (4)
N1—C8 1.432 (3) C11—H11A 0.9800
N1—C9 1.486 (4) C11—H11B 0.9800
N2—C7 1.342 (3) C11—H11C 0.9800
N2—N3 1.361 (3) C12—C13 1.530 (4)
N3—C10 1.362 (4) C12—H12A 0.9900
N3—C12 1.444 (4) C12—H12B 0.9900
C1—C2 1.383 (4) C13—C14 1.491 (4)
C1—C6 1.396 (4) C14—C15 1.386 (4)
C1—H1 0.9500 C14—C19 1.387 (4)
C2—C3 1.381 (5) C15—C16 1.388 (4)
C2—H2 0.9500 C15—H15 0.9500
C3—C4 1.383 (5) C16—C17 1.378 (5)
C3—H3 0.9500 C16—H16 0.9500
C4—C5 1.383 (4) C17—C18 1.374 (4)
C4—H4 0.9500 C17—H17 0.9500
C5—C6 1.406 (4) C18—C19 1.386 (4)
C6—C7 1.454 (4) C18—H18 0.9500
C7—C8 1.404 (4) C19—H19 0.9500
O1—S1—O2 118.56 (15) N1—C9—H9C 109.5
O1—S1—N1 107.98 (14) H9A—C9—H9C 109.5
O2—S1—N1 107.12 (14) H9B—C9—H9C 109.5
O1—S1—C5 109.31 (15) N3—C10—C8 104.9 (3)
O2—S1—C5 108.32 (14) N3—C10—C11 123.6 (3)
N1—S1—C5 104.67 (14) C8—C10—C11 131.4 (3)
C8—N1—C9 115.7 (3) C10—C11—H11A 109.5
C8—N1—S1 110.62 (19) C10—C11—H11B 109.5
C9—N1—S1 117.0 (2) H11A—C11—H11B 109.5
C7—N2—N3 103.8 (2) C10—C11—H11C 109.5
N2—N3—C10 113.6 (2) H11A—C11—H11C 109.5
N2—N3—C12 118.5 (2) H11B—C11—H11C 109.5
C10—N3—C12 127.5 (3) N3—C12—C13 111.0 (2)
C2—C1—C6 120.0 (3) N3—C12—H12A 109.4
C2—C1—H1 120.0 C13—C12—H12A 109.4
C6—C1—H1 120.0 N3—C12—H12B 109.4
C3—C2—C1 121.1 (3) C13—C12—H12B 109.4
C3—C2—H2 119.4 H12A—C12—H12B 108.0
C1—C2—H2 119.4 O3—C13—C14 122.5 (3)
C2—C3—C4 120.0 (3) O3—C13—C12 119.7 (3)
C2—C3—H3 120.0 C14—C13—C12 117.8 (3)
C4—C3—H3 120.0 C15—C14—C19 119.7 (3)
C3—C4—C5 119.1 (3) C15—C14—C13 121.7 (3)
C3—C4—H4 120.4 C19—C14—C13 118.6 (3)
C5—C4—H4 120.4 C14—C15—C16 119.8 (3)
C4—C5—C6 121.7 (3) C14—C15—H15 120.1
C4—C5—S1 120.1 (2) C16—C15—H15 120.1
C6—C5—S1 118.1 (2) C17—C16—C15 120.4 (3)
C1—C6—C5 117.9 (3) C17—C16—H16 119.8
C1—C6—C7 123.9 (3) C15—C16—H16 119.8
C5—C6—C7 118.0 (3) C18—C17—C16 119.8 (3)
N2—C7—C8 110.7 (3) C18—C17—H17 120.1
N2—C7—C6 125.7 (3) C16—C17—H17 120.1
C8—C7—C6 123.5 (3) C17—C18—C19 120.5 (3)
C10—C8—C7 107.0 (3) C17—C18—H18 119.8
C10—C8—N1 128.5 (3) C19—C18—H18 119.8
C7—C8—N1 124.5 (3) C18—C19—C14 119.8 (3)
N1—C9—H9A 109.5 C18—C19—H19 120.1
N1—C9—H9B 109.5 C14—C19—H19 120.1
H9A—C9—H9B 109.5
O1—S1—N1—C8 −164.8 (2) C6—C7—C8—C10 −174.9 (3)
O2—S1—N1—C8 66.5 (2) N2—C7—C8—N1 179.7 (3)
C5—S1—N1—C8 −48.4 (2) C6—C7—C8—N1 3.3 (5)
O1—S1—N1—C9 −29.4 (3) C9—N1—C8—C10 74.8 (4)
O2—S1—N1—C9 −158.1 (2) S1—N1—C8—C10 −149.2 (3)
C5—S1—N1—C9 87.0 (2) C9—N1—C8—C7 −103.0 (4)
C7—N2—N3—C10 −0.4 (3) S1—N1—C8—C7 33.0 (4)
C7—N2—N3—C12 −173.6 (3) N2—N3—C10—C8 1.3 (3)
C6—C1—C2—C3 1.3 (5) C12—N3—C10—C8 173.8 (3)
C1—C2—C3—C4 −0.9 (5) N2—N3—C10—C11 −176.5 (3)
C2—C3—C4—C5 −0.3 (5) C12—N3—C10—C11 −4.0 (5)
C3—C4—C5—C6 1.3 (5) C7—C8—C10—N3 −1.6 (3)
C3—C4—C5—S1 −177.4 (3) N1—C8—C10—N3 −179.7 (3)
O1—S1—C5—C4 −27.1 (3) C7—C8—C10—C11 176.0 (3)
O2—S1—C5—C4 103.5 (3) N1—C8—C10—C11 −2.2 (6)
N1—S1—C5—C4 −142.5 (3) N2—N3—C12—C13 90.0 (3)
O1—S1—C5—C6 154.2 (2) C10—N3—C12—C13 −82.2 (4)
O2—S1—C5—C6 −75.3 (3) N3—C12—C13—O3 1.9 (4)
N1—S1—C5—C6 38.8 (3) N3—C12—C13—C14 −176.9 (3)
C2—C1—C6—C5 −0.3 (4) O3—C13—C14—C15 179.8 (3)
C2—C1—C6—C7 −174.6 (3) C12—C13—C14—C15 −1.4 (5)
C4—C5—C6—C1 −0.9 (4) O3—C13—C14—C19 −2.1 (5)
S1—C5—C6—C1 177.8 (2) C12—C13—C14—C19 176.6 (3)
C4—C5—C6—C7 173.6 (3) C19—C14—C15—C16 −1.2 (5)
S1—C5—C6—C7 −7.7 (4) C13—C14—C15—C16 176.8 (3)
N3—N2—C7—C8 −0.7 (3) C14—C15—C16—C17 −0.3 (6)
N3—N2—C7—C6 175.7 (3) C15—C16—C17—C18 1.4 (6)
C1—C6—C7—N2 −18.5 (5) C16—C17—C18—C19 −1.1 (5)
C5—C6—C7—N2 167.3 (3) C17—C18—C19—C14 −0.4 (5)
C1—C6—C7—C8 157.4 (3) C15—C14—C19—C18 1.5 (5)
C5—C6—C7—C8 −16.8 (4) C13—C14—C19—C18 −176.6 (3)
N2—C7—C8—C10 1.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O2i 0.95 2.43 3.246 (5) 144
C9—H9B···O1ii 0.98 2.46 3.413 (4) 163.
C11—H11C···O1iii 0.98 2.44 3.406 (4) 168.

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1, y, −z+1/2; (iii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2383).

References

  1. Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704. [DOI] [PubMed]
  2. Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.
  3. Ciciani, G., Coronnello, M., Guerrini, G., Selleri, S., Cantore, M., Failli, P., Mini, E. & Costanzo, A. (2008). Bioorg. Med. Chem. 16, 9409–9419. [DOI] [PubMed]
  4. Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., Souza, M. V. N., Freitas, I. O., Soaresa, R. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. 16, 649–653. [DOI] [PubMed]
  5. Farag, A. M., Mayhoub, A. S., Barakatb, S. E. & Bayomi, A. H. (2008). Bioorg. Med. Chem. Lett. 16, 881–889. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002188/pk2383sup1.cif

e-68-0o502-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002188/pk2383Isup2.hkl

e-68-0o502-Isup2.hkl (190.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812002188/pk2383Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES