Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 21;68(Pt 2):o505. doi: 10.1107/S160053681200205X

N-(2-Eth­oxy­phen­yl)formamide

Mohammad Kazem Rofouei a, Jafar Attar Gharamaleki a,*, Fereshteh Younesian b, Giuseppe Bruno c, Hadi Amiri Rudbari c
PMCID: PMC3275250  PMID: 22347106

Abstract

The title compound, C9H11NO2, was obtained as an unexpected product in an attempt to synthesize a triazene ligand. The title mol­ecule is almost planar, with the formamide and eth­oxy groups oriented at 2.7 (3) and 12.9 (2)°, respectively, with respect to the mean plane of the benzene ring. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming a chain along the a axis. Weak C—H⋯π inter­actions with an H⋯π distance of 2.78 Å reinforce the crystal packing, resulting in a three-dimensional network.

Related literature

For preparation of several trizene compounds in our laboratory, see: Melardi et al. (2011). For similar crystal structures, see: Landman et al. (2011); Chitanda et al. (2008); Hu et al. (2010).graphic file with name e-68-0o505-scheme1.jpg

Experimental

Crystal data

  • C9H11NO2

  • M r = 165.19

  • Orthorhombic, Inline graphic

  • a = 7.9079 (4) Å

  • b = 14.1253 (6) Å

  • c = 15.9555 (7) Å

  • V = 1782.25 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.45 × 0.23 × 0.18 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.671, T max = 0.746

  • 8725 measured reflections

  • 1961 independent reflections

  • 1248 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.120

  • S = 1.03

  • 1961 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200205X/pv2505sup1.cif

e-68-0o505-sup1.cif (14.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200205X/pv2505Isup2.hkl

e-68-0o505-Isup2.hkl (94.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200205X/pv2505Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C3–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.24 2.9741 (18) 144
C2—H2ACgii 0.97 2.78 3.5853 (19) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The preparation of several trizene compounds as ligands in our laboratory has already been reported (Melardi et al., 2011). However, the title compound was formed as an unexpected product in an attempt for the synthesis of a triazene ligand, 1-(2-methylphenyl)-3(2-ethoxyphenyl)triazene). In this article, we report the synthesis and crystal structure of the title compound.

The title molecule (Fig. 1) is almost planar with formamide and ethoxy groups oriented at 2.7 (3) and 12.9 (2)°, respectively, with respect to the mean-plane of the benzene ring. The bond lengths and angles in the title molecule are in accord with the corresponding bond lengths and angles reported in a few similar structures (Landman et al., 2011; Chitanda et al., 2008; Hu et al., 2010).

In the crystal structure molecules are linked by intermolecular N—H···O hydrogen bonds (Table 1) to form a chain along the a-axis. Weak edge-to-face C—H···Cg1 stacking interaction between an ethoxy hydrogen and a benzene ring with H···π distance of 2.78 Å, (Cg1 is the center of benzene ring atoms C3/C4/C6—C9) reinforce the crystal packing resulting in a three-dimensional network (Fig. 2).

Experimental

The title compound was obtained as an unexpected product in an attempt for the synthesis of a triazene ligand, 1-(2-methylphenyl)-3(2-ethoxyphenyl)triazene). A 100 ml flask was charged with 10 g of ice and 15 ml of water and then cooled to 273 K in an ice-bath. To this were added 2-methylaniline (0.215 g, 2 mmol), hydrochloric acid (36.5%, 2 mmol) and 2 ml water. To this solution was then added a solution containing NaNO2 (0.16 g, 2 mmol) in 2 ml water during a 15 min period. After mixing for 15 min, the obtained solution was added to a solution of o-phenetidin (0.261 ml, 2 mmol), 2 ml methanol and 2 ml water. After that a solution containing sodium acetate (2.95 g, 36 mmol) in 10 ml water was added. After mixing for 24 h the colorless material was filtered off and dissolved in DMSO. By recrystallization from DMSO, the crystals of the title compound were obtained instead of the expected triazene.

Refinement

The H atoms were placed in calculated positions and refined as riding, with N—H = 0.86 Å and C—H = 0.93, 0.96 and 0.97 Å for aryl, methy and methylene type H-atoms, respectively, with Uiso(H) = 1.2–1.5 Ueq(C/N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the N—-H···O hydrogen bonds and and C—H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.

Crystal data

C9H11NO2 F(000) = 704
Mr = 165.19 Dx = 1.231 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2150 reflections
a = 7.9079 (4) Å θ = 2.6–23.1°
b = 14.1253 (6) Å µ = 0.09 mm1
c = 15.9555 (7) Å T = 296 K
V = 1782.25 (14) Å3 Cubic, colourless
Z = 8 0.45 × 0.23 × 0.18 mm

Data collection

Bruker APEXII CCD diffractometer 1961 independent reflections
Radiation source: fine-focus sealed tube 1248 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 27.1°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −10→10
Tmin = 0.671, Tmax = 0.746 k = −18→17
8725 measured reflections l = −20→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.278P] where P = (Fo2 + 2Fc2)/3
1961 reflections (Δ/σ)max < 0.001
110 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.14029 (12) 0.40133 (8) 0.12756 (7) 0.0571 (3)
N1 −0.12270 (15) 0.33831 (10) 0.04588 (8) 0.0525 (4)
H1 −0.0300 0.3086 0.0561 0.063*
O2 −0.37570 (15) 0.31796 (10) −0.02102 (9) 0.0808 (4)
C1 0.3874 (2) 0.33886 (16) 0.18902 (13) 0.0842 (7)
H1A 0.3183 0.2875 0.2085 0.126*
H1B 0.4759 0.3507 0.2288 0.126*
H1C 0.4361 0.3226 0.1358 0.126*
C2 0.2815 (2) 0.42535 (14) 0.17963 (11) 0.0653 (5)
H2A 0.2425 0.4468 0.2340 0.078*
H2B 0.3469 0.4758 0.1540 0.078*
C3 0.00875 (19) 0.46374 (11) 0.12280 (10) 0.0489 (4)
C4 −0.13409 (18) 0.43045 (11) 0.07964 (9) 0.0466 (4)
C5 −0.23581 (19) 0.29108 (14) 0.00042 (10) 0.0597 (5)
H5 −0.2045 0.2307 −0.0170 0.072*
C6 −0.2759 (2) 0.48701 (12) 0.07355 (11) 0.0585 (5)
H6 −0.3704 0.4656 0.0446 0.070*
C7 −0.2773 (2) 0.57530 (14) 0.11042 (14) 0.0732 (6)
H7 −0.3740 0.6126 0.1075 0.088*
C8 −0.1370 (3) 0.60824 (13) 0.15134 (14) 0.0784 (6)
H8 −0.1384 0.6683 0.1751 0.094*
C9 0.0067 (2) 0.55295 (13) 0.15765 (12) 0.0661 (5)
H9 0.1017 0.5759 0.1853 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0371 (6) 0.0752 (8) 0.0591 (7) 0.0031 (5) −0.0080 (5) −0.0113 (5)
N1 0.0351 (6) 0.0705 (9) 0.0520 (8) 0.0038 (6) −0.0041 (6) −0.0075 (7)
O2 0.0456 (7) 0.0982 (10) 0.0987 (10) 0.0009 (7) −0.0234 (6) −0.0143 (8)
C1 0.0558 (11) 0.1186 (17) 0.0781 (13) 0.0172 (11) −0.0227 (10) −0.0244 (12)
C2 0.0391 (8) 0.0894 (13) 0.0675 (11) −0.0060 (9) −0.0073 (8) −0.0142 (10)
C3 0.0410 (8) 0.0582 (9) 0.0476 (9) −0.0031 (7) 0.0054 (7) 0.0057 (7)
C4 0.0390 (7) 0.0587 (10) 0.0421 (8) −0.0028 (7) 0.0041 (6) 0.0076 (7)
C5 0.0450 (9) 0.0784 (12) 0.0556 (10) −0.0038 (9) −0.0016 (8) −0.0094 (8)
C6 0.0457 (9) 0.0660 (11) 0.0638 (10) 0.0035 (8) −0.0006 (8) 0.0135 (9)
C7 0.0614 (12) 0.0597 (11) 0.0984 (15) 0.0127 (10) 0.0058 (11) 0.0182 (10)
C8 0.0793 (14) 0.0480 (11) 0.1079 (17) −0.0010 (10) 0.0074 (12) 0.0047 (10)
C9 0.0584 (11) 0.0632 (11) 0.0768 (13) −0.0131 (9) 0.0000 (9) 0.0013 (9)

Geometric parameters (Å, °)

O1—C3 1.3656 (18) C3—C9 1.377 (2)
O1—C2 1.4328 (18) C3—C4 1.404 (2)
N1—C5 1.331 (2) C4—C6 1.380 (2)
N1—C4 1.411 (2) C5—H5 0.9300
N1—H1 0.8600 C6—C7 1.379 (3)
O2—C5 1.2185 (19) C6—H6 0.9300
C1—C2 1.488 (3) C7—C8 1.369 (3)
C1—H1A 0.9600 C7—H7 0.9300
C1—H1B 0.9600 C8—C9 1.383 (3)
C1—H1C 0.9600 C8—H8 0.9300
C2—H2A 0.9700 C9—H9 0.9300
C2—H2B 0.9700
C3—O1—C2 118.24 (12) C6—C4—C3 119.61 (15)
C5—N1—C4 128.85 (14) C6—C4—N1 123.97 (14)
C5—N1—H1 115.6 C3—C4—N1 116.40 (13)
C4—N1—H1 115.6 O2—C5—N1 127.37 (18)
C2—C1—H1A 109.5 O2—C5—H5 116.3
C2—C1—H1B 109.5 N1—C5—H5 116.3
H1A—C1—H1B 109.5 C7—C6—C4 120.02 (17)
C2—C1—H1C 109.5 C7—C6—H6 120.0
H1A—C1—H1C 109.5 C4—C6—H6 120.0
H1B—C1—H1C 109.5 C8—C7—C6 120.28 (18)
O1—C2—C1 107.60 (14) C8—C7—H7 119.9
O1—C2—H2A 110.2 C6—C7—H7 119.9
C1—C2—H2A 110.2 C7—C8—C9 120.60 (18)
O1—C2—H2B 110.2 C7—C8—H8 119.7
C1—C2—H2B 110.2 C9—C8—H8 119.7
H2A—C2—H2B 108.5 C3—C9—C8 119.78 (17)
O1—C3—C9 125.23 (15) C3—C9—H9 120.1
O1—C3—C4 115.08 (14) C8—C9—H9 120.1
C9—C3—C4 119.68 (15)
C3—O1—C2—C1 167.77 (15) C4—N1—C5—O2 −0.8 (3)
C2—O1—C3—C9 6.7 (2) C3—C4—C6—C7 −0.6 (2)
C2—O1—C3—C4 −172.08 (14) N1—C4—C6—C7 178.25 (15)
O1—C3—C4—C6 178.00 (13) C4—C6—C7—C8 1.7 (3)
C9—C3—C4—C6 −0.8 (2) C6—C7—C8—C9 −1.2 (3)
O1—C3—C4—N1 −0.97 (19) O1—C3—C9—C8 −177.42 (16)
C9—C3—C4—N1 −179.82 (14) C4—C3—C9—C8 1.3 (3)
C5—N1—C4—C6 3.4 (3) C7—C8—C9—C3 −0.3 (3)
C5—N1—C4—C3 −177.67 (15)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C3–C9 ring.
D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 2.20 2.6108 (16) 109.
N1—H1···O2i 0.86 2.24 2.9741 (18) 144.
C2—H2A···Cgii 0.97 2.78 3.5853 (19) 141

Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2505).

References

  1. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA
  2. Chitanda, J. M., Quail, J. W. & Foley, S. R. (2008). Acta Cryst. E64, o1728. [DOI] [PMC free article] [PubMed]
  3. Hu, H.-L., Wu, C.-J., Cheng, P.-C. & Chen, J.-D. (2010). Acta Cryst. E66, o180. [DOI] [PMC free article] [PubMed]
  4. Landman, M., Westhuizen, B. van der, Bezuidenhout, D. I. & Liles, D. C. (2011). Acta Cryst. E67, o120. [DOI] [PMC free article] [PubMed]
  5. Melardi, M. R., Ghannadan, A., Peyman, M., Bruno, G. & Amiri Rudbari, H. (2011). Acta Cryst. E67, o3485. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200205X/pv2505sup1.cif

e-68-0o505-sup1.cif (14.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200205X/pv2505Isup2.hkl

e-68-0o505-Isup2.hkl (94.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200205X/pv2505Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES