Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1981 Nov 11;9(21):5763–5784. doi: 10.1093/nar/9.21.5763

The structural organization of dinucleosomes and oligonucleosomes. Electric dichroism and birefringence study.

C Houssier, I Lasters, S Muyldermans, L Wyns
PMCID: PMC327559  PMID: 7312629

Abstract

The spatial organization of nucleosomes and linker DNA in dinucleosomes and oligonucleosomes of various chain lengths has been investigated through electric dichroism, birefringence and relaxation times measurements at low ionic strengths (0.5 to 2.2 mM). From the negative dichroism observed for all the samples, it is concluded that the nucleosome subunits in the oligonucleosome chain must lie with their disc planes closely parallel to the fibre axis. The large increase of the negative dichroism of dinucleosomes upon Hl removal is interpreted by the unwinding of the DNA tails and the internucleosomal segment. All the samples displayed, under bipolar pulses, a predominantly induced orientation mechanism.

Full text

PDF
5763

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Billett M. A., Barry J. M. Role of histones in chromatin condensation. Eur J Biochem. 1974 Dec 2;49(3):477–484. doi: 10.1111/j.1432-1033.1974.tb03852.x. [DOI] [PubMed] [Google Scholar]
  2. Bradbury E. M., Carpenter B. G., Rattle H. W. Magnetic resonance studies of deoxyribonucleoprotein. Nature. 1973 Jan 12;241(5385):123–126. doi: 10.1038/241123a0. [DOI] [PubMed] [Google Scholar]
  3. Bradbury E. M., Danby S. E., Rattle H. W., Giancotti V. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. Histone H1 in chromatin and in H1 - DNA complexes. Eur J Biochem. 1975 Sep 1;57(1):97–105. doi: 10.1111/j.1432-1033.1975.tb02280.x. [DOI] [PubMed] [Google Scholar]
  4. Butt T. R., Jump D. B., Smulson M. E. Nucleosome periodicity in HeLa cell chromatin as probed by micrococcal nuclease. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1628–1632. doi: 10.1073/pnas.76.4.1628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colson P., Houssier C., Fredericq E. Electro-optical properties of nucleic acids and nucleoproteins. V. Study of sonicated DNA and nucleohistone solutions. Biochim Biophys Acta. 1974 Mar 27;340(3):244–261. doi: 10.1016/0005-2787(74)90270-6. [DOI] [PubMed] [Google Scholar]
  6. Crothers D. M., Dattagupta N., Hogan M., Klevan L., Lee K. S. Transient electric dichroism studies of nucleosomal particles. Biochemistry. 1978 Oct 17;17(21):4525–4533. doi: 10.1021/bi00614a026. [DOI] [PubMed] [Google Scholar]
  7. Emonds-Alt X., Houssier C., Fredericq E. Electric birefringence of DNA and chromatin. Influence of divalent cations. Biophys Chem. 1979 Jul;10(1):27–39. doi: 10.1016/0301-4622(79)80003-4. [DOI] [PubMed] [Google Scholar]
  8. Finch J. T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Houssier C., Bontemps J., Emonds-Alt X., Fredericq E. Electric dichroism and birefringence of DNA, chromatin, and their complexes with cationic dyes. The structure of chromatin. Ann N Y Acad Sci. 1977 Dec 30;303:170–189. doi: 10.1111/j.1749-6632.1977.tb55930.x. [DOI] [PubMed] [Google Scholar]
  10. Houssier C., Fredericq E. Electro-optical properties of nucleic acids and nucleoproteins. I. Study of the gel-forming deoxyribonucleohistone. Biochim Biophys Acta. 1966 May 12;120(1):113–130. doi: 10.1016/0926-6585(66)90283-4. [DOI] [PubMed] [Google Scholar]
  11. Hozier J., Renz M., Nehls P. The chromosome fiber: evidence for an ordered superstructure of nucleosomes. Chromosoma. 1977 Jul 18;62(4):301–317. doi: 10.1007/BF00327030. [DOI] [PubMed] [Google Scholar]
  12. Klevan L., Hogan M., Dattagupta N., Crothers D. M. Electric dichroism studies of the size and shape of nucleosomal particles. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):207–214. doi: 10.1101/sqb.1978.042.01.023. [DOI] [PubMed] [Google Scholar]
  13. Lasters I., Muyldermans S., Wyns L., Hamers R. Differences in rearrangements of H1 and H5 in chicken erythrocyte chromatin. Biochemistry. 1981 Mar 3;20(5):1104–1110. doi: 10.1021/bi00508a010. [DOI] [PubMed] [Google Scholar]
  14. Lee K. S., Mandelkern M., Crothers D. M. Solution structural studies of chromatin fibers. Biochemistry. 1981 Mar 17;20(6):1438–1445. doi: 10.1021/bi00509a006. [DOI] [PubMed] [Google Scholar]
  15. Marion C., Roux B. Influence of histone H1 on chromatin structure. Biochem Biophys Res Commun. 1980 May 30;94(2):535–541. doi: 10.1016/0006-291x(80)91264-4. [DOI] [PubMed] [Google Scholar]
  16. Marion C., Roux B. Nucleosomes arrangement in chromatin. Nucleic Acids Res. 1978 Nov;5(11):4431–4449. doi: 10.1093/nar/5.11.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McGhee J. D., Rau D. C., Charney E., Felsenfeld G. Orientation of the nucleosome within the higher order structure of chromatin. Cell. 1980 Nov;22(1 Pt 1):87–96. doi: 10.1016/0092-8674(80)90157-9. [DOI] [PubMed] [Google Scholar]
  18. Muyldermans S., Lasters I., Wyns L., Hamers R. Upon the observation of superbeads in chromatin. Nucleic Acids Res. 1980 May 24;8(10):2165–2172. doi: 10.1093/nar/8.10.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Müller U., Zentgraf H., Eicken I., Keller W. Higher order structure of simian virus 40 chromatin. Science. 1978 Aug 4;201(4354):406–415. doi: 10.1126/science.208155. [DOI] [PubMed] [Google Scholar]
  20. Oudet P., Gross-Bellard M., Chambon P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell. 1975 Apr;4(4):281–300. doi: 10.1016/0092-8674(75)90149-x. [DOI] [PubMed] [Google Scholar]
  21. Rattner J. B., Hamkalo B. A. Higher order structure in metaphase chromosomes. II. The relationship between the 250 A fiber, superbeads and beads-on-a-string. Chromosoma. 1978 Dec 6;69(3):373–379. doi: 10.1007/BF00332140. [DOI] [PubMed] [Google Scholar]
  22. Renz M., Nehls P., Hozier J. Involvement of histone H1 in the organization of the chromosome fiber. Proc Natl Acad Sci U S A. 1977 May;74(5):1879–1883. doi: 10.1073/pnas.74.5.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rill R., Van Holde K. E. Electric dichroism of chromatin. J Mol Biol. 1974 Mar 15;83(4):459–471. doi: 10.1016/0022-2836(74)90507-5. [DOI] [PubMed] [Google Scholar]
  24. Strätling W. H., Müller U., Zentgraf H. The higher order repeat structure of chromatin is built up of globular particles containing eight nucleosomes. Exp Cell Res. 1978 Dec;117(2):301–311. doi: 10.1016/0014-4827(78)90144-1. [DOI] [PubMed] [Google Scholar]
  25. Strätling W. H. Role of histone H1 in the conformation of oligonucleosomes as a function of ionic strength. Biochemistry. 1979 Feb 20;18(4):596–603. doi: 10.1021/bi00571a008. [DOI] [PubMed] [Google Scholar]
  26. Suau P., Bradbury E. M., Baldwin J. P. Higher-order structures of chromatin in solution. Eur J Biochem. 1979 Jul;97(2):593–602. doi: 10.1111/j.1432-1033.1979.tb13148.x. [DOI] [PubMed] [Google Scholar]
  27. Thoma F., Koller T., Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol. 1979 Nov;83(2 Pt 1):403–427. doi: 10.1083/jcb.83.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wyns L., Lasters I., Hamers R. Cross-linking of nucleosomal histones with monofunctional imidoesters. Nucleic Acids Res. 1978 Jul;5(7):2345–2358. doi: 10.1093/nar/5.7.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES