Abstract
Nuclei from frozen calf thymus suspended in buffer were analyzed for metal content prior to and after repeated washing. After three such extractions about 0.1 micrograms Zn/mg DNA and 0.025 micrograms Cu/mg DNA remained tightly associated with chromatin. This level of metal was essentially unchanged with subsequent washings. Digestion of extracted nuclei with micrococcal nuclease yielded soluble nucleoprotein containing zinc and copper. Metal enriched regions of chromatin appeared to be preferentially solubilized by digestion, and the solubilized metal was only partially dializable either with or without EDTA. Metal profiles generated from gel (A-5m) chromatography analysis of chelated and non-chelated solubilized chromatin were distinctive in that copper was undetectable (by flame AA) while zinc was associated only with low molecular weight products when EDTA was used. In contrast, both metals were detected with higher molecular weight oligonucleosomes in the absence of chelating agents. Additionally, the two metals localized within nucleoprotein peaks and these metal-containing regions were only resolved by gel chromatography when EDTA was omitted throughout the procedure. A discrete Cu-rich species in a region of the profile suggests a subset of Cu-rich nucleoprotein complexes.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold E. A., Young K. E. Heterogeneity of chromatin: fractionation of sonicated rat liver chromatin by partial precipitation with Mg2+. Arch Biochem Biophys. 1974 Sep;164(1):73–89. doi: 10.1016/0003-9861(74)90009-5. [DOI] [PubMed] [Google Scholar]
- Auld D. S., Kawaguchi H., Livingston D. M., Vallee B. L. RNA-dependent DNA polymerase (reverse transcriptase) from avian myeloblastosis virus: a zinc metalloenzyme. Proc Natl Acad Sci U S A. 1974 May;71(5):2091–2095. doi: 10.1073/pnas.71.5.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryan S. E., Simons S. J., Vizard D. L., Hardy K. J. Interactions of mercury and copper with constitutive heterochromatin and euchromatin in vivo and in vitro. Biochemistry. 1976 Apr 20;15(8):1667–1676. doi: 10.1021/bi00653a013. [DOI] [PubMed] [Google Scholar]
- EDWARDS C., OLSON K. B., HEGGEN G., GLENN J. Intracellular distribution of trace elements in liver tissue. Proc Soc Exp Biol Med. 1961 May;107:94–97. doi: 10.3181/00379727-107-26546. [DOI] [PubMed] [Google Scholar]
- FUJII T. Presence of zinc in nucleoli and its possible role in mitosis. Nature. 1954 Dec 11;174(4441):1108–1109. doi: 10.1038/1741108a0. [DOI] [PubMed] [Google Scholar]
- Falchuk K. H., Fawcett D. W., Vallee B. L. Role of zinc in cell division of Euglena gracilis. J Cell Sci. 1975 Jan;17(1):57–78. doi: 10.1242/jcs.17.1.57. [DOI] [PubMed] [Google Scholar]
- Falchuk K. H., Mazus B., Ulpino L., Vallee B. L. Euglena gracilis DNA dependent RNA polymerase II: a zinc metalloenzyme. Biochemistry. 1976 Oct 5;15(20):4468–4475. doi: 10.1021/bi00665a021. [DOI] [PubMed] [Google Scholar]
- Felsenfeld G. Chromatin. Nature. 1978 Jan 12;271(5641):115–122. doi: 10.1038/271115a0. [DOI] [PubMed] [Google Scholar]
- Gottesfeld J. M., Butler P. J. Structure of transcriptionally-active chromatin subunits. Nucleic Acids Res. 1977 Sep;4(9):3155–3173. doi: 10.1093/nar/4.9.3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greil W., Igo-Kemenes T., Zachau H. G. Nuclease digestion in between and within nucleosomes. Nucleic Acids Res. 1976 Oct;3(10):2633–2644. doi: 10.1093/nar/3.10.2633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy K. J., Bryan S. E. Localization and uptake of copper into chromatin. Toxicol Appl Pharmacol. 1975 Jul;33(1):62–69. doi: 10.1016/0041-008x(75)90244-6. [DOI] [PubMed] [Google Scholar]
- Hardy K., Chiu J. F., Beyer A. L., Hnilica L. S. Immunological properties of fractionated avian erythroid nuclei. J Biol Chem. 1978 Aug 25;253(16):5825–5831. [PubMed] [Google Scholar]
- Jackson J. B., Pollock J. M., Jr, Rill R. L. Chromatin fractionation procedure that yields nucleosomes containing near-stoichiometric amounts of high mobility group nonhistone chromosomal proteins. Biochemistry. 1979 Aug 21;18(17):3739–3748. doi: 10.1021/bi00584a015. [DOI] [PubMed] [Google Scholar]
- Kornberg R. D. Structure of chromatin. Annu Rev Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
- McGhee J. D., Felsenfeld G. Nucleosome structure. Annu Rev Biochem. 1980;49:1115–1156. doi: 10.1146/annurev.bi.49.070180.005343. [DOI] [PubMed] [Google Scholar]
- Slater J. P., Mildvan A. S., Loeb L. A. Zinc in DNA polymerases. Biochem Biophys Res Commun. 1971 Jul 2;44(1):37–43. doi: 10.1016/s0006-291x(71)80155-9. [DOI] [PubMed] [Google Scholar]