Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Jan;6(1):247–258. doi: 10.1093/nar/6.1.247

Preparation of polydeoxynucleotides linked to a solid support by coupling CNBr-activated cellulose with 5'-NH2-terminated oligo and poly(pdT)'s.

L Clerici, F Campagnari, J F de Rooij, J H van Boom
PMCID: PMC327686  PMID: 424291

Abstract

Synthetically-prepared 5'-NH2-dT(pdT)n oligomers (66,n=4 or 7) were immobilized on cyanogen bromide activated cellulose. The influence of temperature, pH, and ionic strength on the rate of the coupling process was studied. The oligomer 5'-NH2-DT(pdT)8 could be elongated enzymatically to the polymers 5'-NH2-dT(pdT)n (n=20, 51 and 84), which could be immobilized on cellulose. The cellulose-NH-dT(pdT)84 polymer thus obtained could be assembled to a new solid-state polymer e.g. poly(dA)290 . poly(/3H/dT)200, poly(dT)85-cellulose which, in turn, was a very convenient substrate for assaying DNA-ligase.

Full text

PDF
247

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arndt-Jovin D. J., Jovin T. M., Bähr W., Frischauf A. M., Marquardt M. Covalent attachment of DNA to agarose. Improved synthesis and use in affinity chromatography. Eur J Biochem. 1975 Jun;54(2):411–418. doi: 10.1111/j.1432-1033.1975.tb04151.x. [DOI] [PubMed] [Google Scholar]
  2. Bekkering-Kuylaars S. A., Campagnari F. Purification of a DNA polymerase from calf thymus nuclei. Biochim Biophys Acta. 1972 Jul 31;272(4):526–538. doi: 10.1016/0005-2787(72)90508-4. [DOI] [PubMed] [Google Scholar]
  3. Cassani G. R., Bollum F. J. Oligodeoxythymidylate: polydeoxyadenylate and oligodeoxyadenylate: polydeoxythymidylate interactions. Biochemistry. 1969 Oct;8(10):3928–3936. doi: 10.1021/bi00838a008. [DOI] [PubMed] [Google Scholar]
  4. Chang L. M., Bollum F. J. Deoxynucleotide-polymerizing enzymes of calf thymus gland. V. Homogeneous terminal deoxynucleotidyl transferase. J Biol Chem. 1971 Feb 25;246(4):909–916. [PubMed] [Google Scholar]
  5. Cozzarelli N. R., Melechen N. E., Jovin T. M., Kornberg A. Polynucleotide cellulose as a substrate for a polynucleotide ligase induced by phage T4. Biochem Biophys Res Commun. 1967 Aug 23;28(4):578–586. doi: 10.1016/0006-291x(67)90353-1. [DOI] [PubMed] [Google Scholar]
  6. Freist W., Schattka K., Cramer F., Jastorff B. Neue Darstellungsmethode von Nucleotid-Analogen der 5'-Amino-5'-desoxy-nucleoside. Chem Ber. 1972;105(3):991–999. doi: 10.1002/cber.19721050330. [DOI] [PubMed] [Google Scholar]
  7. Gilham P. T. The synthesis of celluloses containing covalently bound nucleotides, polynucleotides, and nucleic acids. Biochemistry. 1968 Aug;7(8):2809–2813. doi: 10.1021/bi00848a016. [DOI] [PubMed] [Google Scholar]
  8. Jovin T. M., Kornberg A. Polynucleotide celluloses as solid state primers and templates for polymerases. J Biol Chem. 1968 Jan 25;243(2):250–259. [PubMed] [Google Scholar]
  9. Kato K. I., Gonçalves J. M., Houts G. E., Bollum F. J. Deoxynucleotide-polymerizing enzymes of calf thymus gland. II. Properties of the terminal deoxynucleotidyltransferase. J Biol Chem. 1967 Jun 10;242(11):2780–2789. [PubMed] [Google Scholar]
  10. Lohrmann R., Söll D., Hayatsu H., Ohtsuka E., Khorana H. G. Studies on polynucleotides. LI. Syntheses of the 64 possible ribotrinucleotides derived from the four major ribomononucleotides. J Am Chem Soc. 1966 Feb 20;88(4):819–829. doi: 10.1021/ja00956a039. [DOI] [PubMed] [Google Scholar]
  11. Mathelet M., Clerici L., Campagnari F., Talpaert-Borle M. The activity of mammalian polynucleotide ligase on x-irradiated DNAs. Biochim Biophys Acta. 1978 Mar 29;518(1):138–149. doi: 10.1016/0005-2787(78)90123-5. [DOI] [PubMed] [Google Scholar]
  12. Panet A., Khorana H. G. Studies on polynucleotides. The linkage of deoxyribopolynucleotide templates to cellulose and its use in their replication. J Biol Chem. 1974 Aug 25;249(16):5213–5221. [PubMed] [Google Scholar]
  13. Poonian M. S., Schlabach A. J., Weissbach A. Covalent attachment of nucleic acids to agarose for affinity chromatography. Biochemistry. 1971 Feb 2;10(3):424–427. doi: 10.1021/bi00779a011. [DOI] [PubMed] [Google Scholar]
  14. Rickwood D. An improved method for the insolubilization of DNA for affinity chromatography. Biochim Biophys Acta. 1972 Apr 26;269(1):47–50. doi: 10.1016/0005-2787(72)90072-x. [DOI] [PubMed] [Google Scholar]
  15. Shih T. Y., Martin M. A. Chemical linkage of nucleic acids to neutral and phosphorylated cellulose powders and isolation of specific sequences by affinity chromatography. Biochemistry. 1974 Jul 30;13(16):3411–3418. doi: 10.1021/bi00713a036. [DOI] [PubMed] [Google Scholar]
  16. Sundaram P. V. Some general methods of preparing affinity columns. Nucleic Acids Res. 1974 Nov;1(11):1587–1599. doi: 10.1093/nar/1.11.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. van der Schans G. P., Aten J. B. Determination of molecular weight distributions of DNA by means of sedimentation in a sucrose gradient. Anal Biochem. 1969 Oct 15;32(1):14–30. doi: 10.1016/0003-2697(69)90100-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES