Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Feb;6(2):767–780. doi: 10.1093/nar/6.2.767

Metabolic stability of 2' 5'oligo (A) and activity of 2' 5'oligo (A)-dependent endonuclease in extracts of interferon-treated and control HeLa cells.

M A Minks, S Benvin, P A Maroney, C Baglioni
PMCID: PMC327727  PMID: 424314

Abstract

Extracts of interferon-treated HeLa cells adsorbed to poly(I) . poly(C)-agarose have been used to synthesize 2'5'oligo(A). This oligonucleotide has been characterized by enzymatic digestion with alkaline phosphatase, snake venom phosphodiesterase, T2 ribonuclease and chromatography on DEAE, and PEI-cellulose. The oligonucleotide inhibits protein synthesis in vitro and activates an endonuclease present in extracts of control and interferon-treated cells. The metabolic stability of 2'5'oligo(A) has been investigated in these cell extracts. The oligonucleotide undergoes rapid degradation, particularly in the absence of ATP and of an energy regenerating system. Furthermore, the 2'5'oligo(A)-activated endonuclease reverts to an inactive state under these conditions, but can be reactivated upon further addition of 2'5'oligo(A). A possible role for the degradation of 2'5'oligo(A) in the mechanism of interferon action is discussed.

Full text

PDF
767

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baglioni C., Minks M. A., Maroney P. A. Interferon action may be mediated by activation of a nuclease by pppA2'p5'A2'p5'A. Nature. 1978 Jun 22;273(5664):684–687. doi: 10.1038/273684a0. [DOI] [PubMed] [Google Scholar]
  2. Baglioni C., Weber L. A. The use of phosphorylated sugars to support protein synthesis with some mammalian cell extracts. FEBS Lett. 1978 Apr 1;88(1):37–40. doi: 10.1016/0014-5793(78)80601-2. [DOI] [PubMed] [Google Scholar]
  3. Ball L. A., White C. N. Oligonucleotide inhibitor of protein synthesis made in extracts of interferon-treated chick embryo cells: comparison with the mouse low molecular weight inhibitor. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1167–1171. doi: 10.1073/pnas.75.3.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clemens M. J., Williams B. R. Inhibition of cell-free protein synthesis by pppA2'p5'A2'p5'A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell. 1978 Mar;13(3):565–572. doi: 10.1016/0092-8674(78)90329-x. [DOI] [PubMed] [Google Scholar]
  5. Eppstein D. A., Samuel C. E. Mechanism of interferon action. Partial purification and characterization of a low-molecular-weight interferon-mediated inhibitor of translation with nucleolytic activity. Biochem Biophys Res Commun. 1977 Nov 7;79(1):145–153. doi: 10.1016/0006-291x(77)90072-9. [DOI] [PubMed] [Google Scholar]
  6. Eppstein D. A., Samuel C. E. Mechanism of interferon action. Properties of an interferon-mediated ribonucleolytic activity from mouse L929 cells. Virology. 1978 Aug;89(1):240–251. doi: 10.1016/0042-6822(78)90056-9. [DOI] [PubMed] [Google Scholar]
  7. Friedman R. M. Antiviral activity of interferons. Bacteriol Rev. 1977 Sep;41(3):543–567. doi: 10.1128/br.41.3.543-567.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hickey E. D., Weber L. A., Baglioni C. Nuclease activity in preparations of creatine phosphokinase: effect on mRNA stability. Biochem Biophys Res Commun. 1978 Jan 30;80(2):377–383. doi: 10.1016/0006-291x(78)90687-3. [DOI] [PubMed] [Google Scholar]
  9. Kerr I. M., Brown R. E., Ball L. A. Increased sensitivity of cell-free protein synthesis to double-stranded RNA after interferon treatment. Nature. 1974 Jul 5;250(461):57–59. doi: 10.1038/250057a0. [DOI] [PubMed] [Google Scholar]
  10. Kerr I. M., Brown R. E., Hovanessian A. G. Nature of inhibitor of cell-free protein synthesis formed in response to interferon and double-stranded RNA. Nature. 1977 Aug 11;268(5620):540–542. doi: 10.1038/268540a0. [DOI] [PubMed] [Google Scholar]
  11. Kerr I. M., Brown R. E. pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):256–260. doi: 10.1073/pnas.75.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lebleu B., Sen G. C., Shaila S., Cabrer B., Lengyel P. Interferon, double-stranded RNA, and protein phosphorylation. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3107–3111. doi: 10.1073/pnas.73.9.3107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ratner L., Sen G. C., Brown G. E., Lebleu B., Kawakita M., Cabrer B., Slattery E., Lengyel P. Interferon, double-stranded RNA and RNA degradation. Characteristics of an endonuclease activity. Eur J Biochem. 1977 Oct 3;79(2):565–577. doi: 10.1111/j.1432-1033.1977.tb11841.x. [DOI] [PubMed] [Google Scholar]
  14. Ratner L., Wiegand R. C., Farrell P. J., Sen G. C., Cabrer B., Lengyel P. Interferon, double-stranded RNA and RNA degradation. Fractionation of the endonucleaseINT system into two macromolecular components; role of a small molecule in nuclease activation. Biochem Biophys Res Commun. 1978 Apr 14;81(3):947–954. doi: 10.1016/0006-291x(78)91443-2. [DOI] [PubMed] [Google Scholar]
  15. Roberts W. K., Hovanessian A., Brown R. E., Clemens M. J., Kerr I. M. Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature. 1976 Dec 2;264(5585):477–480. doi: 10.1038/264477a0. [DOI] [PubMed] [Google Scholar]
  16. Rose J. K. Heterogneeous 5'-terminal structures occur on vesicular stomatitis virus mRNAs. J Biol Chem. 1975 Oct 25;250(20):8098–8104. [PubMed] [Google Scholar]
  17. Sen G. C., Lebleu B., Brown G. E., Kawakita M., Slattery E., Lengyel P. Interferon, double-stranded RNA and mRNA degradation. Nature. 1976 Nov 25;264(5584):370–373. doi: 10.1038/264370a0. [DOI] [PubMed] [Google Scholar]
  18. Sen G. C., Lebleu B., Brown G. E., Rebello M. A., Furuichi Y., Morgan M., Shatkin A. J., Lengyel P. Inhibition of reovirus messenger RNA methylation in extracts of interferon-treated Ehrlich ascites tumor cells. Biochem Biophys Res Commun. 1975 Jul 8;65(1):427–434. doi: 10.1016/s0006-291x(75)80111-2. [DOI] [PubMed] [Google Scholar]
  19. Sen G. C., Shaila S., Lebleu B., Brown G. E., Desrosiers R. C., Lengyel P. Impairment of reovirus mRNA methylation in extracts of interferon-treated Ehrilich ascites tumor cells: further characteristics of the phenomenon. J Virol. 1977 Jan;21(1):69–83. doi: 10.1128/jvi.21.1.69-83.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weber L. A., Feman E. R., Baglioni C. A cell free system from HeLa cells active in initiation of protein synthesis. Biochemistry. 1975 Dec 2;14(24):5315–5321. doi: 10.1021/bi00695a015. [DOI] [PubMed] [Google Scholar]
  21. Weber L. A., Hickey E. D., Maroney P. A., Baglioni C. Inhibition of protein synthesis by Cl-. J Biol Chem. 1977 Jun 10;252(11):4007–4010. [PubMed] [Google Scholar]
  22. Zilberstein A., Federman P., Shulman L., Revel M. Specific phosphorylation in vitro of a protein associated with ribosomes of interferon-treated mouse L cells. FEBS Lett. 1976 Sep 15;68(1):119–124. doi: 10.1016/0014-5793(76)80418-8. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES